About Attrasoft TransApplet

Attrasoft TransApplet is a .Net Class Library that enables the addition of Image Recognition
capability to products & services. It can be used for:

Image Verification (1:1 Matching);

Image Identification (1:N Matching);

Image Search or Retrieval (1:N Matching); and

Multiple Verification or Identification (N:N and N:M Matching).

ImageFinder for Windows is an off-the-shelf Application Software that enables System Integrators,
Solution Developers, and Individuals to quickly test their own Image Recognition ideas.

TransApplet is a .Net Class Library that enables System Integrators, Solution Developers, and
Individuals to quickly add Image Recognition capability to their products and services.

Software Requirements

The software requirements are:

e Microsoft .Net Framework
e Microsoft Visual Studio .Net or C#.Net

When you install Microsoft Visual Studio .Net, the Microsoft .Net framework will be installed
automatically.

Installing the Software

Copying the “CD:\transapplet70” to the C-driver will complete the installation.

Information & Support

Attrasoft TransApplet
Attrasoft

P. O. Box 13051
Savannah, GA. 31406
USA

http://attrasoft.com

imagefinder @attrasoft.com (Email Subject: Attrasoft)

Phone: (912) 484-1717

© Attrasoft 1998 - 2007

http://attrasoft.com/
mailto:imagefinder@attrasoft.com

License Agreement

THIS LICENSE AGREEMENT ("AGREEMENT") IS BETWEEN YOU, THE END USER, AND
Attrasoft. IT GOVERNS THE USE OF THE SOFTWARE PROGRAM AND DOCUMENTATION
KNOWN AS Attrasoft TransApplet (THE "PRODUCT"). IF YOU USE THE PRODUCT, THEN
YOU AGREE TO THE TERMS OF THIS AGREEMENT. IF YOU ARE NOT WILLING TO BE
BOUND BY THE TERMS OF THIS AGREEMENT, PROMPTLY RETURN THIS PACKAGE TO
THE PLACE OF PURCHASE WITH A COPY OF THE RECEIPT, AND YOUR LICENSE FEE
WILL BE REFUNDED.

Attrasoft licenses use of the PRODUCT, which may be manufactured and distributed by Attrasoft or
by a third party (either, the "Manufacturer"). You, the end-user, assume responsibility for the selection
of the PRODUCT to achieve your intended results, and for its installation and subsequent use.

GRANT OF LICENSE

Attrasoft hereby grants you a non-exclusive license to use the PRODUCT in object code form only,
upon the terms and conditions contained in this Agreement.

You may:

1. Use the PRODUCT on the number of workstations for which you have purchased PRODUCT
licenses. The workstations must be owned, leased or otherwise controlled by you, whether in a network
or other configuration.

2. Create a quantity of backup copies of the PRODUCT, in any machine-readable or printed form,
equal to the number of PRODUCT licenses you have purchased.

3. Transfer the PRODUCT and your rights under this Agreement to another party if the other party
agrees to accept the terms and conditions of this Agreement. If you transfer the PRODUCT, you must,
at the same time, either transfer all copies of PRODUCT to the same party, or destroy any copies not
transferred. You must immediately notify Attrasoft of the transfer.

4. Print out one copy of the Product documentation from the Attrasoft program, TransApplet, for each
license purchased. If you print out any part of the Product documentation from the Attrasoft program,
TransApplet, you must reproduce and include all the copyright notices that appear in the
documentation on any such copy of the documentation.

You May Not:

1. Use or copy the PRODUCT, in whole or in part, except as expressly provided in this Agreement.

2. Use the PRODUCT concurrently on more than the number of workstations for which you have
purchased licenses.

3. Copy, rent, distribute, sell, license or sub-license, or otherwise transfer the PRODUCT or this
license, in whole or in part, to another party, except as specifically set forth above.

4. Incorporate the PRODUCT or any portion of the PRODUCT into, or use the PRODUCT, or any
portion of the PRODUCT to develop, other software without a license from Attrasoft, or otherwise
modify or create a derivative work from the PRODUCT without a license from Attrasoft.

5. Reverse engineer, decompile, or disassemble the PRODUCT.

To use the PRODUCT as described in Sections 2 or 4 above, or for any other use not specifically set
forth above, additional licensing from Attrasoft is required. For further information, please contact
Attrasoft at:

Attrasoft, Inc.

Phone: (912) 484-1717

gina@attrasoft.com

PROPRIETARY RIGHTS

This Agreement gives you ownership only of the physical Attrasoft program, TransApplet, on which
the PRODUCT is stored, but not of the PRODUCT itself. You acknowledge that Attrasoft owns all
rights, title, and interest in the PRODUCT, and that you will acquire no rights in the PRODUCT
through your use of it. You agree that you will take no action that interferes with Attrasoft's rights in
the PRODUCT.

TERMS

This Agreement is effective until terminated. You may terminate it at any time by destroying the
PRODUCT together with all copies and documentation in any form. This Agreement will also
terminate automatically and without notice from Attrasoft if you fail to comply with any term or
condition of this Agreement. You agree upon such termination to destroy the PRODUCT and all
copies of the PRODUCT.

DISCLAIMER; LIMITED WARRANTY

EXCEPT AS PROVIDED BELOW, THE PRODUCT IS PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF
THE PRODUCT IS WITH YOU. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION
OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.
NEITHER ATTRASOFT NOR MANUFACTURER WARRANTS THAT THE FUNCTIONS
CONTAINED IN THE PRODUCT WILL MEET YOUR REQUIREMENTS OR THAT THE
OPERATION OF THE PRODUCT WILL BE UNINTERRUPTED OR ERROR-FREE. However,
where Attrasoft is the Manufacturer, Attrasoft warrants that the Attrasoft program, TransApplet, on
which the software is furnished will be free from defects in materials and workmanship under normal
use for a period of ninety (90) days from the date of delivery as evidenced by a copy of your receipt.

LIMITATION OF REMEDIES

Where Attrasoft is the Manufacturer, Manufacturer’s entire liability and your exclusive remedy shall
be:

1. The replacement of the Attrasoft program, TransApplet, not meeting the Limited Warranty, which
is returned to Manufacturer with a copy of your receipt.

2. If Manufacturer is unable to deliver replacement Attrasoft program, TransApplet, which is free of
defects in materials or workmanship, you may terminate this Agreement by returning the PRODUCT
and a copy of your receipt to the place of purchase, and your money will be refunded. Where Attrasoft
is not the Manufacturer, Attrasoft shall have no liability to replace or refund, and you agree to look to
Manufacturer to meet the obligations described above.

LIMITATION OF LIABILITY

IN NO EVENT WILL ATTRASOFT OR MANUFACTURER BE LIABLE TO YOU FOR ANY
DAMAGES, INCLUDING, BUT NOT LIMITED TO, ANY LOST PROFITS, LOST SAVINGS, OR
OTHER INDIRECT, SPECIAL, EXEMPLARY, INCIDENTAL OR CONSEQUENTIAL
DAMAGES, ARISING OUT OF THE USE OR INABILITY TO USE THIS PRODUCT, EVEN IF
ATTRASOFT OR MANUFACTURER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. FURTHER, IN NO EVENT WILL ATTRASOFT OR MANUFACTURER

BE LIABLE FOR ANY CLAIM BY ANY OTHER PARTY ARISING OUT OF YOUR USE OF
THE PRODUCT. SOME JURISDICTIONS DO NOT ALLOW THE LIMITATION OR
EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE
ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.

TRADEMARKS
Attrasoft is a trademark of Attrasoft, Inc. Microsoft, C# logo are registered trademarks of Microsoft
Corporation. No rights, license, or interest in such trademarks is granted hereunder.

U.S. GOVERNMENT RESTRICTED RIGHTS IN DATA

This computer software product and documentation are provided with Restricted Rights. Use,
duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013, or subparagraphs (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights at 48 CFR 52.227-19, as applicable.
Contractor/Manufacturer is Attrasoft, Inc.

EXPORT CONTROLS

You agree not to export or re-export the PRODUCT, directly or indirectly, to any countries, end-users
or for any end uses that are restricted by U.S. export laws and regulations, without first obtaining
permission to do so as required by the U.S. Department of Commerce's Bureau of Industry and
Security, or other appropriate government agency. These restrictions change from time to time. If you
have any questions regarding your obligations under U.S. export regulations, you should contact the
Bureau of Industry and Security, U.S. Department of Commerce, Exporter

Counseling Division, Washington D.C. (202) 482-4811, http://www.bis.doc.gov.

© Attrasoft 1998 — 2007

TABLE OF CONTENTS

ABOUT ATTRASOFT TRANSAPPLET ...t a e e 1
SOFTWARE REQUIREMENTS ..ottt asassasasssaassssssssssssssnssssssnsssssnssnnnnnnnnnn 2
INSTALLING THE SOFTWARE ...ttt e e e e e e s e e e e e e e e e nnnnneeees 3
INFORMATION & SUPPORT ...ttt ettt e e e e e e et e e e e e e e s s annnseeeeeeeeeeeannnnnneeees 3
LICENSE AGREEMENTo e e e 4
TABLE OF CONTENTS ..ottt e e e e e e et e e e e e e e e st e e e e e e e e e s aannnseeeeeeeeeeeannnnnneeeeaeaens 7
1. INTRODUGCTION ...ttt ettt et e e e e e e et e e e e e e e e s s sneseeeeeaeeeeeaansssseeeeaaeeesannnnneeees 17
1.1 What is TransApplet? 17

11T IMAGEFINAET ..ttt et ettt ettt e st e e bt e e s bt e s bteesabeesabteesabeesnbeeenseeesbeeenns 17

1.1.2 ImageFinder Familyc.ccoooiiiiiiiiiie ettt st sttt ettt eaees 17
1.2 Software Requirements 18
1.3 Installing the TransApplet 19

1.3.1 Attrasoft. Transapplet70 Class LIDIATYcocceveiiiiriiiniiiiiiieeeee ettt 19

1.3.2 Chapter EXAMPIEScoouiiiiiiiiiieeieeteet ettt ettt et e b e s bt e sate st e s bt e bt e bt e sbeesbeeemteenseenaeen 20

1.3.3 Linking the TranSAPPIELcc.cociiiiiiirieniertcee ettt ettt st st sttt be e s e e st eeeennees 20
1.4 Attrasoft Image Recognition Basics 20
2. IMAGE RECOGNITION OVERVIEW ...ttt e e e e e e e e e snnnnaeeeeeeeeas 22
2.1 Image Recognition Internal Structures 22
2.2 Filters 22
2.3 Image Preprocessing & Processing 23
2.4 Normalization 24
2.5 Signature Matching 24
2.6 Image Segment Matching 25
3. TRANSAPPLET OVERVIEW. ...ttt e e e e e e e e e e e e e e e nnnneees 26
3.1 TransApplet API & User Interface 26
3.2 Input 26

3.3 Image Display

3.4 Image Preprocessing, Processing, & Normalization

3.5 Parameters

3.6 Signature Recognition

3.7 Dynamic Library

3.8 Image Segment Matching

3.9 Input

3.10 Counting

3.11 Batch Job

3.12 Customized Software

4.1 Signature

4.2 Signature Filter

4.3 Matching Results

4.4 Signature Matching

4.5 ImageLibrary

4.6 Matching Engine

4.7 NeuralNet Filter

4.8 Other API

5. USER INTERFACGE ... oottt e e e e e e e e e ene e e e

5.1 How to Create a Project

5.2 How to Create Menus

5.3 Link to Class Library

5.4 Declare Objects

B, INPUT e e e e e e e s e

6.1 Class Library Name

6.2 Class Library Overview

27

27

28

29

30

30

30

30

30

30

32

33

36

39

40

42

44

45

47

49

50

51

52

53

6.3 Set Up the Chapter Project

6.4 Link to Class Library

6.5 Key Segment

6.6 Search Source Button

7. IMAGE DISPLAY ..o

7.1 Class Library Name

7.2 Link to Class Library

7.3 Implementing Buttons

7.4 Test

7.5 Output Images

8. IMAGE PREPROCESSINGcccoiiiiiiiiiieeee e

8.1 Image Preprocessing Filter

8.2 PreProcessing API

8.3 Enter Parameters

8.4 Cut Off the Border Areas

8.5 Impose a Mask

8.6 Speed Up the Computation

8.7 Skip the Empty Border by Content Percent

9. IMAGE PROCESSING ..ottt

9.1 Good & Bad

9.2 Processing API

9.3 Set Image Processing Filters

9.4 First Two Settings

9.5 Chapter Projects

10. NORMALIZATION ...ttt e

10.1 Class Library Name

54

55

56

58

63

64

64

67

67

69

69

71

72

73

74

74

76

78

80

81

81

83

10.2

10.3

104

11.

111

11.2

11.3

114

11.5

11.6

11.7

11.8

12.

12.1

12.2

12.3

124

12.5

12.6

12.7

13.

13.1

13.2

13.3

134

13.5

13.6

Class Library Overview 84
Link to Class Library 85
Parameters 86
PARAMETER CLASS ...ttt e e e e s e e e e e e e e e e e 87
Pushing Images Through Filters 87

Predefined Objects 88
Grouping Parameters Together 89
Chapter Project 93
Creating Forms 9
TransApplet Objects 97
Selecting Filters 98
Set Filter Parameters 100
IMAGE SIGNATURESt e e e e e e e e e e e e e e e e e e nnnnee s 102
Signature Menu 102
API 102
TransApplet Objects 105
Key Signature 106
Signature File Concepts 108
Signature File Implementation 109
Examples 110
UNSUPERVISED FILTERS ...ttt 112
Unsupervised Filter Menu 112
Unsupervised Filter API 113
N-Signature 113
N:N Matching Design 114
N:N Matching Implementation 115
1:N Matching Design 116

10

13.7 1:N Matching Implementation 116

T4, BIOFILTERSttt e e et e e e e e e e e e b e e e e e e e e e e annnneees 119
14.1 BioFilter Menu 119
14.2 BioFilter API 120
14.3 Training Design 121
14.4 Training Implementation 121
14.5 Parameters 122
14.6 Example: Label Recognition Training 123
14.7 N:N Matching Design 124
14.8 N:N Matching Implementation 124
14.9 1:N Matching Design 125
14.10 1:N Matching Implementation 126
15, NEURALFILTERS ...ttt ettt e e e e e e e e e e e e e e e e e e nnnneees 129
15.1 NeuralFilter Menu 129
15.2 NeuralFilter API 130
15.3 Parameters 131
15.4 Training Design 131
15.5 Training Implementation 133
15.6 N:N Matching Design 133
15.7 N:N Matching Implementation 134
15.8 1:N Matching Design 134
15.9 1:N Matching Implementation 135
16. DYNAMIC LIBRARY ...ttt e ettt e e e e e e e st e e e e e e e e e e e annnneees 138
16.1 Dynamic Library Menu 138
16.2 Dynamic Library API 139
16.3 Creating Master Library 140
16.4 Training Design 141

11

16.5 Load Dynamic Library

16.6 Library M:N Matching

16.7 Library 1:N Matching

16.8 Library Updating Design

16.9 Update Implementation

17. NEURALNET FILTERot

17.1 Key Segment Specification

17.2 NeuralNet Filter Menu

17.3 NeuralNet Filter API

17.4 Training

17.5 1:N Matching Design

17.6 1:N Matching Implementation

17.7 Results

17.8 Another Test: Mr. Potato

18. PARAMETERSo s s

18.1 Overview

18.2 Image Preprocessing

18.3 Image Processing
18.3.1 EdZE FAILETS ..ottt ettt et ettt et sb e s st s bt sb e e be e b eae
18.3.2 ThreShold FAILETScoouiiiiiiiiiiieeee ettt ettt et e st e e ate e s bt e e sabeesabeessaeeesabee s
18.3.3 CLeaN-UP FIILETS ...c..eeeiieiieiiee ettt sttt ettt et esb e satesabe st e e b e e beenbeenaee

18.4 Normalization Filter

18.5 Unsupervised Filter & BioFilter

18.6 Neural Filters

18.7 NeuralNet Filter
T8.7.1 SYMUMEIIY .ottt ettt sttt et ettt et et e et et e bt e sbeesaeesatesanesaneebeenneenee
18.7.2 Translation TYPEcooueeruiiiiiriiiii ettt ettt ettt ettt sttt ettt e sbe e st st e sanesabeebeeneenne
18.7.3 SCANE TYPC.. ittt ettt ettt ettt et et e bt e bt e s bt e et e et e e bt e st e e sbeesatesabe st e eabe e beenbeennee
18.7.4 ROLALION TYPE...cniiiiriiiiiiieteee ettt ettt et ettt et e sbe e st st st s e beebeeae
18.7.5 Area Of INLETESt (AL ..eiiiuiiiiiiiiiiie ettt ettt e ettt e e e etbe e e e tbeeeesarbeee e nsbeeeesssssaeeansseeeeansseeenns
18.7.60 BIUITINE ...ttt ettt et et e bt e s bt e s bt et e et e e bt et e e sb e e sbbesabe s bt e bt e bt ebeenae
T8.7.7 SEISILIVILY ..ttt ettt ettt et et et e bt e bt e s bt e sae e eat e eab e e bt e abeesbeesbbesabeeabeeabe e bt ebeenaee

141

142

144

145

146

149

149

150

151

152

153

154

156

157
158
159
160
162
163
163

166

18.7.8 Internal/External Weight CULcocueiiiiiiiiiiiiieiie ettt ettt sttt e 173

18.7.9 SEEMENE SIZE....cuviiuriiiiiiieiteete ettt ettt et ettt sttt et et et esbeesaee st e sanesane e bt eneenee 173

18.7.10 TMAZE TYPC...uriruriiiieiiiiteeteete ettt sttt sttt ettt et ettt et ettt et esbeesaee st e sanesane e beemeenee 173

18.7.11 Use BioFilter & Use Neural FIItercccoiiviiiiiieniinieienireeeseeeee ettt 174

18.7.12 AULO SEZIMEINL.....eoutiiiiiiieitieeite ettt ettt sttt e bt e bt e bt e s bt e sateeateeab e e bt esbeesbeeshbesabesabeeabe e beebeeaae 174

18713 SUIMMATY ..ottt ettt st sttt et ettt e sae e et e bt et e bt e sbeesaeesatesanesaneebeeneenee 175
19, INPUT OPTIONS ...ttt e et e e e e et e e e e s bt e e e e e aanre e s 176
19.1 File Input 176
19.2 Sub-Directory Input 178
19.3 Segment File Input 179
19.4 Database Input, Whole Image 180
19.5 Database Input, Image Segment 181
19.6 Converting AVI Video to Images 181
19.7 Converting Live Video to Images 183
20. DATABASE INPUT ...ttt ettt e e e e b bt e e e an e et e e e enn e e e e nanneeeeean 185
20.1 Basic Access Class 185
20.2 Input Class 187
20.3 Input Selection 189
20.4 Database Parameter Input 191
20.5 Database Input Implementation 192
20.6 Testing 193
21, VIDEO INPUT ...ttt e et e e e et e e e e b e e e e e aann e e e e nannneeeeeans 194
21.1 Class Library Name 194
21.2 Class Library Overview 195
21.3 Link to Class Library 196
21.4 AVI Video Selection 196
21.5 Converting Video to Images 199
21.6 Testing 201
22. LIVE VIDEO INPUT ..ttt ettt ettt e e e e e e et e e e e e e e e e nnneeeeeaaeeas 202

22.1 Class Library Name 202

22.2 Link to Class Library 203
22.3 ImageFinder Input 204
22.4 Initialization 204
22.5 Video to Image Design 205
22.6 Display Live Image in Picture Box 206
22.7 Converting Live Video to Images 207
23. COUNTING & TRACKING DESIGNcoiiiiiiiiiiieiiiieie ettt e e 210
23.1 Data 210
23.2 Counting the Left Image 211
23.3 Counting the Right Image 213
23.4 Automatic Tracking 214
24, COUNTING ...ttt oo oottt e e e e oo e s b bt e et e e e e e e e e abbee e e e e e e e e e e annnnrneeeaaaans 215
24.1 Introduction 215
24.2 Class Library Name 216
24.3 Class Library Overview 216
24.4 Link to Class Library 217
24.5 Counting Parameters 217
24.6 Implementing Counting 218
24.7 Tracking 219
24.8 Testing 219
25, BATCH JOB ...ttt ettt e et e e e e e e e e e e e 220
25.1 Batch Code 220
25.2 Sample Batch Files 221
25.3 Batch Design 224
25.4 Batch Execution Code 224
25,5 API 226

14

25.6 Implementation

26. IMAGEFINDER FOR DOS.............

26.1 Why Dos Version?

26.2 The Idea

26.3 Batch Design

26.4 Class Library Name

26.5 Class Library Overview

26.6 Creating Console Project

26.7 Link to Class Library

26.8 Implementation the Project

26.9 Example

26.10 How to Use ImageFinder For DOS

27. INTRODUCTION TO IMAGEHUNT

27.1 Why ImageHunt?

27.2 ImageHunt Design

27.3 Introduction to Web Server

27.4 Install ImageHunt

27.5 Create Web Project

27.6 Step 1. Open Image File
27.6.1 Create the Data Directory.............
27.6.2 Modify the WebForm1.aspx Page

27.7 Step 2. Upload Image

27.8 Step 3. Create Batch File

27.8.1 Cookies or URLcccocvvvvuennnnnnee
27.8.2 Create Batch File.........ccouuvuunneeeee.

27.9 Dos Class

27.10 Step 4. Batch Run

28. IMAGEFINDER SUPPORT SERVICE PACKAGES........coooiii e

28.1 What is Support Service?

226

229

230

230

231

231

232

232

232

235

235

237
237
240
240
240
241
241
241
242
243
243
244
245

246

249

15

28.2 Process

28.3 What is a Feasibility Study?

28.4 TransApplet Support

249

250

251

16

1. Introduction

Attrasoft TransApplet for Windows is a .Net Class Library that enables the addition of Image
Recognition capability to products & services. It can be used for:

e Image Verification (1:1 Matching);

e Image Identification (1:N Matching);

e Image Search or Retrieval (1:N Matching); and

e Multiple Verification or Identification (N:N and N:M Matching).

1.1 What is TransApplet?

Attrasoft TransApplet for Windows is a .Net Class Library that enables the addition of Image
Recognition capability to products & services.

1.1.1 ImageFinder

Before you continue, you should be familiar with the Attrasoft ImageFinder for two reasons:

e Learn the structure of the Attrasoft Image Recognition Approach;
e Learn the ImageFinder software.

The TransApplet will:

e Introduce the class library, “Attrasoft. TransApplet70”, used in the ImageFinder.
e As ateaching tool, the TransApplet will show you how to build an ImageFinder via C# .Net.

Therefore, if you have not learned the ImageFinder, you should start with the ImageFinder now.

1.1.2 ImageFinder Family

The ImageFinder family has several members:

e ImageFinder
e TransApplet
e PolyApplet

To understand why there are three members in the ImageFinder family, we need to understand the
Attrasoft software Structure, which consists of three layers:

e Application Layer
e Translation Layer
e Attrasoft Matching Engine (AME) Layer (Neural Network Layer)

17

Where:

e The Application Layer is the graphical user interface layer.

e The Translation Layer deals with images & videos, and formats this application data for the
next layer.

e The AME Layer will do the image matching, which is independent of the type of data used. For
example, the voice data, image data, text data, and numerical data will all be treated equally.
The AME Layer is the same layer used in other Attrasoft products.

Within this structure:

e ImageFinder is a standalone software.
e TransApplet is the Presentation Layer programming tool, which also includes the PolyApplet.
e PolyApplet is the AME Layer programming tool.

Each of the three software has to be purchased separately. The TransApplet does include the
PolyApplet.

Application Layer

I

Translation Layer

A A

v v

PolyNet ABM

Figure 1.1 Attrasoft Component-Object Structure.

1.2 Software Requirements

The software requirements are:

18

e Microsoft .Net Framework
e Microsoft Visual Studio .Net or C#.Net

When you install Microsoft Visual Studio .Net, the Microsoft .Net framework will be installed

automatically.

1.3 Installing the TransApplet

Copying the “CD:\transapplet70” to the C-driver will complete the installation. After copying, you
should have both the Library Files and the Chapter Example.

1.3.1 Attrasoft.Transapplet70 Class Library

The TransApplet library has the following dll files:
C:\transapplet70\Batch70.dlIl
C:\transapplet70\BioFilter70.dll
Each Library has one main class, which has the same name as the Library-name:
Attrasoft.transapplet70.Batch70.Batch70
Attrasoft.transapplet70.BioFilter70.BioFilter70
The advantage of naming the class-name as the library-name is that you will know what to use, i.e.

e if you go to Library, “Attrasoft.transapplet70.Batch70”, use Batch70 class;
e if you go to Library, “Attrasoft.transapplet70.BioFilter70”, use BioFilter70 class, ...

There is no guessing which class you should choose if the Library has more than one class.

The disadvantage is that the compiler will not be able to distinguish between the class-name and the
Library-name unless you use the full name.

For example:
e “Attrasoft.transapplet70.Batch70” is a Library; and
e “Attrasoft.transapplet70.Batch70.Batch70” is a class.

Batch70 alone is not understandable by the C# compiler. To declare an object, you must use the full
path:

Attrasoft.transapplet70.Batch70.Batch70 ba70.

19

1.3.2 Chapter Examples

Each chapter has a project. Many chapters can share the same project. Their projects provide an
integration source code so you can cut and paste to produce your own application.

1.3.3 Linking the TransApplet

To link to these Libraries:

Start C# project;

Right click References in Solution Explorer and select Add Reference;
Click Browse Button;

Select “c:\transapplet70*.dll” files;

Click the “OK” button.

1.4 Attrasoft Image Recognition Basics

The Attrasoft Image Recognition Approach has two basic phases:

e Signature Matching (matching whole images)
e Neural Matching (matching image segment)

In matching whole images, a unique image signature is computed for each image. Different images
will have different signatures. The Signature Matching is based on these image signatures. This
matching can easily reach the speed of 100,000 to 1,000,000 whole images per second and is very
fast.

In the Image Segment matching, a neural net learns what the image looks like in a very similar way as
the human brain does, i.e. adjusting the internal synaptic connections to remember the image. A typical
Feature Space Recognition will use about 100 points and a typical Input Space Recognition will use
about 10,000 points; therefore, the Signature Recognition is much faster than the Image Segment

Recognition.

Image Matching is further divided into filters. It is these filters that will perform the image matching
tasks.

The ability to learn is a fundamental trait of intelligence. Neural Nets are deployed in both Signature
Matching and Segment Matching. Neural Nets can learn from examples. There are two basic phases in

image recognition:

e Training; and
e Recognition.

20

In the training phase, data is imposed upon a neural network to force the network to remember the
pattern of training data. A neural network can remember the training data pattern by adjusting its
internal synaptic connections.

In the recognition phase, the neural network, based on its internal synaptic connections, will determine
whether the newly captured image matches the sample image.

21

2. Image Recognition Overview

2.1 Image Recognition Internal Structures

An image recognition application is roughly divided into:

Level 5: User Interface;

Level 4: Data Management;

Level 3: Image-Matching Layer;

Level 2: Scanner, Camera, and their Drivers;
Level 1: PC with Windows.

The TransApplet Library will be used to implement the Image-Matching layer.
Stand-alone software, like the Attrasoft ImageFinder, is roughly divided into 3 layers:
Level 3: User Interface;
Level 2: Image-Matching Layer;
Level 1: PC with Windows.

The Attrasoft Image Recognition Approach has two basic phases:

e Signature Matching;
e Image Segment Matching

In the Signature Matching, a unique image signature is computed for each image. Different images will
have different signatures. The Signature Matching is based on these image signatures. This matching
can easily reach the speed of 1,000,000 per second and is very fast.

In the Image Segment Matching, a neural net learns what the image looks like in a very similar way as
the human brain does, i.e. adjusting the internal synaptic connections to remember the image.

2.2 Filters

For the ImageFinder, the Image Matching is divided into:

Image Preprocessing

Image Processing
Normalization

Signatures

Feature Recognition

Image Segment Recognition

22

One or more filters further implement each step:

Image Preprocessing
Preprocessing Filter
Image Processing
Edge Filter
Threshold Filter
Clean Up Filter
Normalization
Reduction Filter
Signature
Signature Filter
Feature Recognition
Unsupervised Filter
BioFilter
NeuralFilter
Image Segment Recognition
Neural Net Filter

The image matching software design based on TransApplet is implemented to push an image through

all these filters and at the end of pushing, the matching results will be obtained.

2.3 Image Preprocessing & Processing

Attrasoft ImageFinder learns an image in a way similar to human eyes:

e Ignore the background;
e Focus on an object in the image.

The Image Preprocessing is implemented by one filter, the Image Preprocessing Filter. Three filters
implement image processing:

e Edge Filters;
e Threshold Filters; and
e C(Clean-Up Filters.

The Image Preprocessing and the Image Processing processes are not unique; there are many options
available. Some are better than others.

The principle of choosing the Image Preprocessing and the Image Processing filters is to make the
sample objects stand out, otherwise, change the options.

Image Preprocessing has the following functions:
Cut off the border areas;
Impose a mask;

Speed up the computation;

23

Skip the empty border areas;
Image Processing has the following filters:

The Edge Filters attempt to exaggerate the main features a user is looking for.
The Threshold Filters attempt to suppress the background.
The Clean-Up Filters will smooth the resulting image to reduce recognition error.

2.4 Normalization

The Normalization Sub-Layer will prepare the images for the underlying image matching engine. The
Attrasoft Image Matching Engine is an internally developed algorithm, which is called the “Attrasoft
Boltzmann Machine” or ABM. The ABM neural net deployed in the ImageFinder, by default, is a
100x100 array of neurons.

While any size of neural net can be used, when coming to a particular application, a decision has to be
made. The ImageFinder uses 6 different sizes:

e 10,000 neurons,
e &,100 neurons,

e 6,400 neurons,

e 4,900 neurons, or
e 2,500 neurons.

Later in the multi-layered design, the number of neurons can be much larger. The Reduction Filter will

connect the images to various sets of ABM neural networks.

2.5 Signature Matching

In this phase, a unique image signature is computed for each image. Different images will have
different signatures. The Signature Matching is based on these image signatures. This matching can
easily reach the speed of 1,000,000 per second and is very fast.

A typical image has a dimension of say 480x640, or 300,000 pixels. A Feature Space of an image is a
collection of variables computed from a given image. The number of variables in a Feature Space is
usually less than 1% of the number of pixels. As a result, the matching in the Feature Space is much
faster than Pixel Matching.

The following filters implement the Signature matching:
e Unsupervised Filter

e BioFilter
e Neural Filter

24

2.6 Image Segment Matching

The Attrasoft neural network (AME) is the Matching Engine of the ImageFinder. There is one filter in
this sub-layer, the NeuralNet Filter. The ABM Matching Engine is responsible for all of the Attrasoft
products.

25

3. TransApplet Overview

The TransApplet Class Library, “Attrasoft.TransApplet70”, is used in the ImageFinder. It is a
programming tool. This User’s Guide will show you how to build an ImageFinder software like the
ImageFinder via C# .Net.

Therefore, if you have not learned how use to the ImageFinder, you should start with the
ImageFinder now.

The TransApplet consists of a set of filter class libraries. Each chapter will introduce one of these
libraries as you continue to build the “ImageFinder”. Some minor graphical user interface issues will
be ignored here because it is already complicated enough.

3.1 TransApplet APl & User Interface

Chapter 4, API, describes the API (Application Programming Interface) of the
“Attrasoft. TransApplet70” Class Library. The API is presented as the Library,
“Attrasoft.transapplet70.Interface70”, which consists of a set of Interfaces. Each class implements an
Interface.

Chapter 5, User Interface, briefly describes how to set up the forms and the menu bar for the
ImageFinder, and also how to link to class libraries. The ImageFinder GUI is divided into 3 parts:

e Input/Output
e Menu Items
e Parameters

3.2 Input

Chapter 6, Input, briefly describes how to enter data to the ImageFinder. The input images are further
divided into:

e Key image — the sample image the ImageFinder will match against;
e Search Source — a list of images to be searched.

The search source is further divided into:
e Search-Directory (A directory containing images to be searched);

e Search-File (A file containing images to be searched);
([]

An image path specifies the training image.

A search-folder or search-file specifies the Search Source.
This chapter will introduce the class library, “Attrasoft.transapplet70.Input70”.

26

3.3 Image Display

Chapter 7, Image Display, briefly describes how to display the images. The images are further divided
into:

e Key Image;
e Search Source.

The search source is further divided into:

e Search-Directory (A directory containing images to be searched);
e Search-File (A file containing images to be searched);
[]

The Image Display will play the following role:

Display Key Segment. No image processing will be applied to the image;

Display the first image in search source. No image processing will be applied to the image;
Display the next image and the previous image in search source.

Display the first and next image in the matching results.

Display processed images (after applying the Image Preprocessing Filter, Edge Filter,
Threshold Filter, or Clean-Up Filter).

3.4 Image Preprocessing, Processing, & Normalization

Chapter 8, Image Preprocessing, and Chapter 9, Image Processing, briefly describes the image
preprocessing and image processing required for the ImageFinder.

The Image Preprocessing sub-layer prepares the image for the ImageFinder. Image Preprocessing is
not unique; there are many options available. Some are better than others.

The Image Preprocessing Layer consists of one filter, the Preprocessing filter.

The Image Processing Layer consists of three types of filters:

Edge Filters (Optional);
Threshold Filters (Required); and
Clean-Up Filters (Optional).

The ImageFinder applies these three filters in the above order.
e The Edge Filters attempt to exaggerate the main features a user is looking for.

e The Threshold Filters attempt to suppress the background.
e The Clean-Up Filters will smooth the resulting image to reduce recognition error.

27

From the user’s point of view, Image Processing means you have to set three filters: Edge Filters,
Threshold Filters, and Clean-Up Filters. The Threshold Filter is required; the other two filters are
optional. This chapter will introduce the class library, “Attrasoft.transapplet70.ImageProcessing70”.

Chapter 10, Normalization, briefly describes the Normalization process required for the
ImageFinder. At the end of the Image Processing, the original image is transformed into a new image
with the main features exaggerated and the background suppressed, i.e. the result is still an image. The
underlying image matching engine will process data in a particular format, therefore, an image will
need to be formatted for the internal matching engine via a normalization process.

Normalization has 1 filter, Reduction Filter, which will prepare the images for the underlying image
matching engine. The Attrasoft Image Matching Engine is an internally developed algorithm, which is
called the ‘“Attrasoft Boltzmann Machine” or ABM. The ABM neural net deployed in the
ImageFinder, by default, is a 100x100 array of neurons.

While any size of ABM neural net can be used, when coming to a particular application, a decision has
to be made. The ImageFinder uses 6 different sizes:

10,000 neurons,
8,100 neurons,
6,400 neurons,
4,900 neurons, or
2,500 neurons.

3.5 Parameters

Implementing an image matching software via the TransApplet means pushing an image through
these 10 filters:

1. Preprocessing Filter
2. Edge Filter

3. Threshold Filter

4. Clean-Up Filter

5. Reduction Filter

6. Signature Filter

7. Unsupervised Filter
8. BioFilter

9. NeuralFilter

10. Neural Net Filter

Each filter is an object (See their API in earlier chapters). Each filter will have many parameters and
the 10 filters can have many parameters. It will be easier, from the programming point of view, to

group all of the objects together and to group all of the parameter together.

Chapter 11, Parameters, will describe how to group all of the objects together and how to group all of
the parameters together.

28

3.6 Signature Recognition

The Attrasoft Image Recognition Approach has two basic phases:

e Signature Matching
e Image Segment Matching

In the Signature Recognition, a unique image signature is computed for each image. Different images
will have different signatures. The Signature Matching is based on these image signatures. This
matching can easily reach the speed of 1,000,000 per second and is very fast.

Signature Matching is further divided into filters: Unsupervised Filter, BioFilter, and NeuralFilter. It is
these filters that will perform the image matching tasks.

Chapter 12, Signature Filter, will describe how to generate image signatures.

Chapter 13, Unsupervised Filter, will describe the minimum number of steps for using the
Unsupervised Filter for image recognition:

e Initialization
e Signature
e Unsupervised Matching

Chapter 14, BioFilter, will describe the minimum number of steps for using the BioFilter for image
recognition:

Initialization
Signature

Training

Signature Matching

Initialization sets the ImageFinder parameters. Then, the image signatures are calculated and stored in
a record. Unsupervised Matching can match images based on these records alone. Training teaches the
BioFilter who matches with whom. After training, the BioFilter can be used for 1:1 and 1:N Matching.

BioFilter matches two whole images. BioFilter is better than Unsupervised Matching, but it requires a
process called training. Training teaches the BioFilter who should match with whom. The BioFilter
learns how to match the image features.

Chapter 15, NeuralFilter, introduces the Neural Filter. NeuralFilter matches two whole images, which
is similar to the BioFilter. NeuralFilter is better than both the Unsupervised Filter and the BioFilter, but
it requires a large amount of training data. Training data teaches the NeuralFilter who should match
with whom. In comparison to early filters:

e The advantage of the NeuralFilter is that it is more accurate.
e The disadvantage of the NeuralFilter is that it requires more training data than BioFilter.

29

3.7 Dynamic Library

Chapter 16, Dynamic Library, introduces the dynamic library used in the ImageFinder. Dynamic
Library allows the master library be updated via insertion, deletion, and update.

3.8 Image Segment Matching

Chapter 17, NeuralNet Filter, introduces the neural network used in the ImageFinder.

Chapter 18, Parameters, gives a more detailed description of all parameters used in various filters.

3.9 Input

Chapter 19, Input Options, introduces available input options for the ImageFinder.

Chapter 20, Access Input, introduces using the Access database as a search source for the
ImageFinder. This chapter introduces the Database Input Library.

Chapter 21, Avi Input, introduces using an Avi video file as a search source for the ImageFinder.

Chapter 22, Live Input, introduces using live video as a search source for the ImageFinder.

3.10 Counting

Chapter 23, Counting & Tracking Design, introduces image-counting design. ‘Counting’ counts the
number of objects in an image, assuming there is no overlap between objects.

Chapter 24, ImageCounter, introduces several examples on how to write applications to count the

number of segments, and measure the areas & perimeters of each segment. This chapter also
introduces an example of how to keep track of an object from frame to frame.

3.11 Batch Job

Chapter 25, Batch, introduces the batch command, which allows you to save your setting and execute
your problem in a few clicks. This chapter will also show you how to build customized examples. This
chapter will introduce the class library, “Attrasoft.transapplet70.Batch70.

At this point, you have built a software, which is very similar to the Attrasoft ImageFinder 7.0.

3.12 Customized Software

30

Chapter 26, ImageFinder for Dos, introduces the DOS version of the ImageFinder. ImageFinder for
Dos is command line software that enables System Integrators, Solution Developers, and Individuals to
make a quick & dirty system integration to test their product prototypes and services.

Chapter 27, Attrasoft ImageHunt Web Application, introduces an Internet version of the
ImageFinder. ImageHunt is the ImageFinder for Windows with a web interface. If you need the
ImageFinder for Windows, you might need the ImageFinder for Web at some point. Unlike the
ImageFinder, the Internet Search Engine, by definition, does not bother users with complicated
parameters; therefore, all the parameters in the ImageHunt must be fixed. The cost for such
convenience is that each ImageHunt is limited to a particular type of application, i.e. the ImageHunt
will require customization for a particular problem, say logos, auto parts, documents,

Chapter 28, Development Process, introduces the Image Recognition Implementation Process using
the TransApplet.

31

4. API

This chapter will introduce the interfaces of the important classes. The interface for other classes will
be introduced in the later chapters as they are used.

4.1 Signature

Whole Image Matching is done through Image Signature. An image has a set of computed values
called features. A collection of features is grouped into a signature.

This section introduces Image Signature interface. An Image Signature

attributes:

ID

Name (For example, xyz.jpg)
Path (c:\abc\)

Attributel

Attrabute2

The interface for Image Signature is:

public interface I_ImageSignature

{

}

int getStatus ();

string getID();

string getImageName ();
string getlmagePath();

string getAbsolutePath ();

int getNumberOfAttributes ();
int [] getSignatureAttributes();

int getSignatureAttributes (int index);

string toString ();

The following table lists the functions.

consists of the following

Function

Descriptions

Comments

int getStatus ()

Returns the status
associated with the
signature.

Output:

1: signature ready.

-1: no image

0: signature not ready.

32

-2: image segmentation
specification error
-3: other error.

string getID()

Returns the ID associated
with the signature.
Output: image ID.

string getlmageName ()

Returns the image name
associated with the
signature.

Output: image name.

string getlmagePath()

Returns the image path
associated with the
signature.

Output: image path.

string getAbsolutePath ()

Returns the absolute path
associated with the
signature.

Output: image absolute
path.

int getNumberOfAttributes
0

Returns the number of
attributes associated with
the signature.

Output: number of
attributes.

int []
getSignatureAttributes()

Returns the attribute array
associated with the
signature.

Output: attribute array.

int
getSignatureAttributes()
(int index)

Returns the attribute
associated with the input
index.

Input: index.

Output: attribute
associated with the input
index.

string toString ()

Returns the entire image
signature as a string with
fields separated by Tab.

4.2 Signature Filter

Signature filter computes signatures in the TransApplet: the input is an image and the output is a

signature.

The filter has two classes: Signature Generator and Signature Filter. The
Generator is:

public interface I_SignatureGenerator

{
bool setSignatureFilter (int x);
int getSignatureFilter ();
ImageSignature getSignature (Bitmap b);
int getSignatureFilterSize ();
string [] getSignatureFilterNames();
Hlclass

The following table lists the functions.

interface for Signature

Function Descriptions Comments
ImageSignature Gets the signature of the
getSignature (Bitmap b) input image.
Input:
Bitmap b
Output:
Signature.
int getSignatureFilterSize | Gets the number of
0 attributes the library of
signatures.
bool setSignatureFilter (int | Selects a Signature
X) Generator.
int getSignatureFilter ()

The interface for Signature Filter is:

public interface I_SignatureFilter

{

bool setSignatureFilter (int x);
int getSignatureFilter ();

string [] getSignatureFilterNames();

ImageSignature getSignature (string imagePath, string ID);
ImageSignature getSignature (string imagePath);

ImageSignature getSignature (Bitmap b, string ID);
ImageSignature getSignature (Bitmap b);

34

ImageSignature getSignature
(' string imagePath, string ID,int X, int y, int w, int h);
ImageSignature getSignature
(Bitmap bImg, string path, string name, string ID,
int X, int y, int w, int h);

bool getLibrary (string [] imageAbsolutePath, string fileName);
bool getLibrary
(' string [] imageAbsolutePath, string [] IDs, string fileName);

bool getSegmentLibrary (string [] imageAbsolutePath,
string [] IDs,
string [] xs,
string [] ys,
string [] ws,
string [] hs,
string fileName);

bool getSegmentLibrary (string [] imageAbsolutePath,
string [] IDs,
int [] xs,
int [] ys,
int [] ws,
int [] hs,
string fileName);

}/class

The following table lists the functions.

Function

Descriptions

Comments

bool setSignatureFilter (int

X)

int getSignatureFilter ()

Selects a Signature filter.

string [] Gets a list of Signature
getSignatureFilterNames(); | filter names.
ImageSignature Gets the Signature of the

getSignature (string
imagePath, string ID);

ImageSignature
getSignature (string
imagePath);

ImageSignature
getSignature (Bitmap b,
string ID);

input image.

35

ImageSignature
getSignature (Bitmap b);

ImageSignature
getSignature

(' string imagePath, string
ID,int x, int y, int w, int h);

ImageSignature
getSignature

(Bitmap bImg, string path,
string name, string ID,

int X, int y, int w, int h);

Gets the Signature of the
input image segment.

Input:
string imagePath, or
Bitmap bImg
string ID
int x, int y, int w, int h.
Output:
Signature.

bool getLibrary
('string []
imageAbsolutePath,
string fileName);

bool getLibrary
('string []
imageAbsolutePath,
string [] IDs,

string fileName);

bool getSegmentLibrary (
string []
imageAbsolutePath,
string [] IDs,

string [] xs,

string [] ys,

string [] ws,

string [] hs,

string fileName);

bool getSegmentLibrary (
string []
imageAbsolutePath,
string [] IDs,

int [] xs,

int [] ys,

int [] ws,

int [] hs,

string fileName);

Generates a Signature
library from all images in
string []
imageAbsolutePath and
produce a file that contains
all signatures.

Input:

string []
imageAbsolutePath
Output:

A text file that contains
the library of signatures.

4.3 Matching Results

Attrasoft ImageFinder matches whole images or image segments. The ImageFinder can be used for:

¢ Image Verification (1:1 Matching);

¢ Image Identification (1:N Matching);

e Image Search or Retrieval (1:N Matching); and

e Multiple Matching (N:N and N:M Matching).

The results for N:N Matching always goes to a file. The results for 1:1 and 1:N Matching go to a data
structure called Results_1N. The interface for class, Results_1IN, is:

public interface I_Results_1N

{
bool getStatus ();

int getNumberOfMatches();

string getImagelD (int 1) ;
string [] getlmagelD () ;
string [] getlmageID_N (int N);

string getScore(int 1);
string [] getScore();
string [] getScore_N (int N);

string getlmageName (int i) ;
string [] getlmageName () ;
string [] getlmageName_N (int N) ;

string getlmagePath (int 1) ;
string []getImagePath () ;
string [] getlmagePath_N (int N) ;

string getX(int i);
string [] getX();
string [] getX_N (int N);

string getY (int 1);
string [] getY();
string [] getY_N (int N);

string getW(int 1);

string [] getW();

string [] getW_N (int N);
string getH(int 1);

string [] getH();

string [] getH_N (int N);

Results_IN sort ();

37

string toString ();

}

The following table lists the functions.

Functions

Descriptions

Comments

int getStatus ()

Returns the status of the
current signature
comparison:

> 0: OK;

< 0: Error.

int getNumberOfMatches()

Returns the number of
matches of the current
signature comparison.

string getlmagelD (int 1)
string [] getlmagelD ()
string [] getlmageID_N
(intN)

Returns the matching
IDs of the current
signature.

string getScore(int 1)
string [] getScore()
string [] getScore_N
(intN)

Returns the matching
scores of the current
signature.

string getlmageName

(int 1)

string [] getlmageName ()
string [] getlmageName_N
(intN)

Returns the matching
Names of the current
signature.

string getlmagePath (int 1)
string []getImagePath ()
string [] getlmagePath_N
(intN)

Returns the matching
paths of the current
signature.

string getX(int 1)

string [] getX()

string [] getX_N (int N)
string getY (int 1)

string [] getY()

string [] getY_N (int N)
string getW(int 1)

string [] getW()

string [] getW_N (int N)
string getH(int 1)

string [] getH()

string [] getH_N (int N)

Returns the matching
(X, y, w, h) of the
current signature.

string toString ()

Returns the entire
results as a string with
fields separated by Tab.

38

4.4 Signature Matching

Both BioFilter and Unsupervised Filter match two whole images. BioFilter is better than Unsupervised
Matching, but it requires a process called training. Training teaches the BioFilter who should match
with whom. The BioFilter learns how to match the image features.

e The advantage of the BioFilter is that it does not require a lot of training data.
e The disadvantage of the BioFilter is that it has a lower identification rate than the Neural Filter.

NeuralFilter also matches two whole images, which is similar to the BioFilter. NeuralFilter is better
than both Unsupervised Filter and BioFilter, but it requires a large amount of training data. Training
data teaches the NeuralFilter who should match with whom. In comparison:

e The advantage of the NeuralFilter is that it is more accurate.
e The disadvantage of the NeuralFilter is that it requires more training data than BioFilter.

The interfaces for BioFilter and Unsupervised Filter are basically the same except the Unsupervised
Filter does not have the training part. The interfaces for BioFilter and Neural Filter are identical. The
interface for BioFilter is:

public interface I_BioFilter

{

bool training (string al_txt, string match_txt);

Attrasoft. TransApplet70.Results_IN .Results_1N findMatchl11
(Attrasoft. TransApplet70.ImageSignature70.ImageSignature sigl,
Attrasoft. TransApplet70.ImageSignature70.ImageSignature sig2);

Attrasoft. TransApplet70.Results_IN .Results_1N findMatchl11
(string pathl, string path2);

Attrasoft. TransApplet70.Results_IN .Results_1N findMatchl11
(Bitmap left, Bitmap right);

Attrasoft. TransApplet70.Results_1N.Results_1N findMatch1N
(Attrasoft. TransApplet70.ImageSignature70.ImageSignature sig,
string alFile, string b1File);

Attrasoft. TransApplet70.Results_1N.Results_1N findMatch1N
(string keyuPath, string alFile, string b1File);

Attrasoft. TransApplet70.Results_1N.Results_1N findMatch1N
(Bitmap keyImage, string alFile, string b1File);

bool findMatchNN (string alFile, string b1File);
bool findMatchNM (string alFile, string a2File, string b1File);

The following table lists the functions.

39

Functions Descriptions

bool training (string al_txt, string match_txt) Trains the
BioFilter.

Attrasoft. TransApplet70.Results_IN .Results_1N Makes a 1:1

findMatchl11 matching

(Attrasoft.TransApplet70.ImageSignature70.ImageSignature sigl,

Attrasoft. TransApplet70.ImageSignature70.ImageSignature sig2);

Attrasoft. TransApplet70.Results_IN .Results_1N findMatch11

(string pathl, string path2);

Attrasoft. TransApplet70.Results_IN .Results_1N findMatchl11

(Bitmap left, Bitmap right);

Attrasoft. TransApplet70.Results_1N.Results_1N findMatch1N Makes a 1:N

(Attrasoft. TransApplet70.ImageSignature70.ImageSignature sig, matching

string alFile, string b1File);

Attrasoft. TransApplet70.Results_1N.Results_1N findMatch1N
(string keyuPath, string alFile, string b1File)

Attrasoft. TransApplet70.Results_1N.Results_1N findMatch1N
(Bitmap keylmage, string alFile, string b1File)

bool findMatchNN (string alFile, string b1File);
bool findMatchNM (string alFile, string a2File, string b1File);

Matches all image
signatures in file
alFile against all

image signatures in

alFile or a2File
and saves the
results to blFile.

4.5 ImagelLibrary

Dynamic Library allows the library (N images in a 1:N Matching) to be updated via insertion, deletion,

and update.
The interface for Image Library filter is:

public interface I_ImageLibrary

{
string getLibraryID ();

bool setLibraryID (string x);

bool load ();
bool load (string fileName);
bool load (string fileNamel, string fileName?2);

40

bool print ();

bool clear();

bool backup ();
bool backup (string fileName);

bool addSignature (ImageSignature sig);

bool deleteSignature (ImageSignature sig);
bool deleteSignature (string ID);
bool replaceSignature (ImageSignature sig);

bool mergeLibrary (string libFilel, string libFile2, string outputLib);

}

The following table lists the functions.

Functions Descriptions Comments
int getLibraryID () Gets the Library ID
(optional).
void setLibraryID (string | Sets the Library ID
X) (optional).

bool load ()

Loads the default master
library, lib1.txt.

bool load (string

Loads master library

fileName) specified by fileName.

bool load (string Loads two libraries

fileNamel, string specified by fileNamel

fileName?2) and fileName?2.

bool clear() Clears the current
library from RAM only.

bool backup () Saves current library to
the default file,
lib1_bk.txt.

bool backup (string Saves current library to

fileName) a back file.

bool addSignature Adds a signature to a

(ImageSignature sig) loaded image library in

RAM.

bool deleteSignature
(ImageSignature sig)

Deletes a signature from
a loaded image library
in RAM..

bool deleteSignature
(string ID)

Deletes a signature from
a loaded image library
in RAM..

41

bool replaceSignature
(ImageSignature sig)

Replaces a signature
from a loaded image
library in RAM..

bool mergeLibrary
(string libFilel, string
libFile2, string outputLib)

Merges two signature
libraries into a single
library.

Input:

string libFilel

string libFile2

string outputLib
Output:

A text file that
contains the library of
signatures from both
input libraries.

4.6 Matching Engine

The Unsupervised Filter, the BioFilter, and the NeuralFilter all have their own matching engine. The

interface is basically identical. In this section, we introduce the Neural Filter Matching Engine.

The interface for Neural Filter Matching Engine is:

public interface I_MatchingEngine

{

int getLowCut();
void setLowCut(int X);

int getHighCut();
void setHighCut(int x);

void setNeuralOutputType(int x);
int getNeuralOutputType();

void setThreshold(int x);
int getThreshold();

void setSensitivity(int X);
int getSensitivity();

void setBlurring(int x);
int getBlurring();

void setUseRelativeScore(int x);
int getUseRelativeScore();

42

bool setLibrary
(Attrasoft. TransApplet70.ImageLibrary70.ImageLibrary lib);

bool setSignature
(Attrasoft. TransApplet70.ImageSignature70.ImageSignature sig);

bool setNFTraining
(Attrasoft. TransApplet70.MatchingEngineTraining70.MatchingEngineTraining70 a_1);

bool setBFTraining
(Attrasoft. TransApplet70.MatchingEngineTrainingBF70.MatchingEngineTrainingBF70 bf70_1);

Attrasoft. TransApplet70.Results_1N.Results_1N findMatch11
(Attrasoft. TransApplet70.ImageSignature70.ImageSignature sigl,
Attrasoft. TransApplet70.ImageSignature70.ImageSignature sig2);

Attrasoft. TransApplet70.Results_I1N.Results_1N findMatch ();
Attrasoft. TransApplet70.Results_1N.Results_1N findMatch
(Attrasoft. TransApplet70.ImageSignature70.ImageSignature sig);

}

The following table lists the functions.

Comments
FUNCTIONS DESCRIPTIONS
int getLowCut() Gets and Sets matching
void setLowCut(int x) engine parameters.
int getHighCut()
void setHighCut(int x)

void setNeuralOutputType
(int X)
int getNeuralOutputType()

void setThreshold(int x)
int getThreshold()

void setSensitivity (int x)
int getSensitivity()

void setBlurring (int x)
int getBlurring()

void setUseRelativeScore
(int X)
int getUseRelativeScore()

bool setLibrary Sets the library to be used

(ImageLibrary lib) in matching signatures.

bool setSignature Sets the signature for

(ImageSignature sig) matching.

bool setNFTraining Sets the training objects

(MatchingEngineTraining70 for matching.

a_l)

bool setBFTraining

(MatchingEngineTrainingBF70

bf70_1)

Results_1N findMatch11 Gets 1:1 match results for

(ImageSignature sigl, sigl and sig2.

ImageSignature sig2);

Results_IN findMatch () Gets the match results for
the signature, sig,
specified by function,
setSignature
(ImageSignature sig)
Output:

Results_1N.

Results_IN findMatch Gets the match results for

(ImageSignature sig) the signature, sig.

Input:
ImageSignature sig;
Output:
Results_1N.

4.7 NeuralNet Filter

The NeuralNet Filter matches a segment of an image(s). The interface for the NeuralNet Filter
Matching Engine is:

public interface I_NeuralNetFilter
{
bool train (Bitmap img);
bool train (string sPath);
bool train (Bitmap img, int X, int y, int w, int h);
bool train (string sPath, int x, int y, int w, int h);

bool retrain (Bitmap img);
bool retrain (string sPath);
bool retrain (Bitmap img, int X, int y, int w, int h);
bool retrain (string sPath, int x, int y, int w, int h);

Attrasoft. TransApplet70.Results_I1N.Results_1N

44

findMatch11 (Bitmap imgl);

Attrasoft. TransApplet70.Results_I1N.Results_1N
findMatchl11 (string pathl);

Attrasoft. TransApplet70.Results_I1N.Results_1N
findMatch1N (string [] fileList);

bool findMatchNN (string [] fileList, string c1File);

bool findMatchNM (string [] keyList, string [] libraryList, string c1File);

}

The following table lists the functions.

Functions

Descriptions

bool train (Bitmap img)
bool train (string sPath)
bool train (Bitmap img, int X, int y, int w, int h)
bool train (string sPath, int x, int y, int w, int h)

Trains the neural
net.

bool retrain (Bitmap img)
bool retrain (string sPath)
bool retrain (Bitmap img, int X, int y, int w, int h)
bool retrain (string sPath, int x, int y, int w, int h)

Retrains the neural
net.

Attrasoft. TransApplet70.Results_I1N.Results_1N Makes a 1:N
findMatch11 (Bitmap imgl); Matching.
Attrasoft. TransApplet70.Results_I1N.Results_1N
findMatchl11 (string pathl);
Attrasoft. TransApplet70.Results_I1N.Results_1N
findMatch1N (string [] fileList);
Makes a N:N
bool findMatchNN (string [] fileList, string c1File) Matching and N:M
Matching.

bool findMatchNM (string [] keyList, string [] libraryList, string
clFile);

4.8 Other API

We will introduce other APT’s in later chapters as we encounter them.

Input (Chapter 6)

Image List (Chapter 7)

Image Preprocessing (Chapter 8)
Image Processing (Chapter 9)
Normalization (Chapter 10)
Database Input (Chapter 20)
Video Input (Chapter 21 & 22)
Parameters (Chapter 11 & 18)
Batch (Chapter 25)

These classes include:

45

Counting (Chapter 23 & 24)
Tracking (Chapter 23)

46

5. User Interface

This User’s Guide is written as if you will create your own version of the ImageFinder. We will do a
step-by-step instruction for implementing an “ImageFinder”. Eventually, you will have your own
“ImageFinder”.

This chapter briefly describes how to set up the form and menu bar for the ImageFinder. The
ImageFinder GUI is divided into 3 parts:

e Input/Output
e Menu Items
e Parameters

We will use C# .Net as the implementation language. We will build the user interface form with a
Menu Bar and Input buttons.

5.1 How to Create a Project

To create a new C# project:

1. Start the Visual Studio .Net, (see Figure 5.1).

2. Click File =» New Project command. The New Project dialog box is displayed (Figure 5.2).

3. Language and Templates: Highlight the Visual C# project folder in the Project Type list to
display the templates that are available for C#. Then, highlight the Windows Application
template (Figure 5.2).

4. Location and Name: Enter a name for the project and select the location for the project. A
folder with the same name as the project is automatically added to the location you specify. We
will use chap4 as the project name.

5. Click the ‘OK’ button to start the new project (Figure 5.3).

Now go to the property window and set (Figure 5.4):

e Forml.text to “ImageFinder”;
e Resize Forml.

47

20 Microsoft Development Environment [design] - Start Page =10 ll
Flle Edit View Tools Window Help

H-m-ed@| R o->-E-B - | - | B R

e = (0|8 G | vsidefault htm e 8L,

Start Page | 4 b x || Solotion Explarer 7 x|
2 ok

g L

£

g

E

Projects “ Find Samples

Open Project New Project

A solution Explorer | ZF Class view |

| Dynamic Help x|
@ [&l
1 Help =

=||| Seltion Explorer

IManaging Solutions, Projects, and File

Task List - 0 Build Error tasks shown (filtered)

T |l ‘ Description | File

s
e ‘ & Samples

Click here to add a new task

Wisual Studio Samples

02 Getting Started

Creating Mew Solutions and Projects
Upgrading Existing Code

Adding Mews Project Tkems
Programming Languages

") Taskuist | B ootput |

Custorizing Dynamic Help -
4 - '” >

| Done

[I | 2

Figure 5.1 Create C# Project.

New Project

Project Tvpes:

Templakes:

I:l YWisual Basic Projects
49 Wisual C# Projects

I:l Wisual C++ Projects

{2 Setup and Deployment Projects
{2 other Projects

----- 23 visual Studio Solutions

Windoves
Contraol Library

Class Library

&M

A5P.MET Web ASP.MET Web ‘Web Contral

@ @l -

Application Service Library J
-

& project For creating an application with a Windows user interface

Mame: I WindowsApplicationl

Location: I Cvisualstudio, net

Project will be created at Ciivisualstudio, netWindowsapplicationl .

j Browse, ., |

FMore |

Ik I Cancel | Help

Figure 5.2 Select Project Templates.

48

@0 chap4 - Microsoft Yisual C# .NET [design] - Form1.cs [Design] =10 5[
Fle Edit View Project Buld Debug Data Format Tools Window Help
» Debug - MY = A
R e R A R .
Form1.cs [Design] | 4 b x || Solution Explarer - chapd 2 ox|

EE|EH B

[Solution ‘chapd' (1 project)
= (5 chap4

(3] References
App.ica

- [#] AssemblyInfo.cs

- Formi.cs

54 Solution Explorer | ZF Class view |

| Properties A x|

| Form1 System.windows, Forms Fon = |

Task List - 0 Build Error tasks shown (filtered)

|
Cursor Default »
Font. Microsoft Sans Ser_
| ForeColor Il ControlText

T | vl ‘ Description File Line

‘ FormBorderStyls Sizable

Click here bo add a new task

RightToLeft Mo

Text Form1l

Text
The text contained in the control.

TaskList | B] output

" B! Properties | @ Dynamic Help |

[Ready [I

| 2
.
Figure 5.3 Forml.
2% chap4 - Microsoft ¥isual C# .NET [design] - Form1.cs [D o [w] |
Eile Edit ‘Wew Project Buld Dsbug Data Tools ‘Window Help
S EHE[L BB oo EB) o ar | BERTE-,
B &Sm0 o |EEel ey B8 & & L
Formi1.cs [Design]* | 4 b % |[Solution Explarer - chap4 a2 x|

oo 35]

& maintenut

A=E|E L&

E Solution 'chap4’ (1 project)
=] E’ﬂ chap4
(i3] References
App.ico
[#] Assemblylnfo.cs
Farml.cs

| Q Solution Explorer E Class Yiew |

IFurml System. Windows., Forms Farr » |
Z |

MaximizeBox True =

Task List - 0 Build Error tasks shown (filtered)

maintenu <|

x*
i | MinimizeBox True

1] [v] Deseription File Line
Tt

\ Opacity 100%

Click here to add a new task

ShowInTaskbar True

=
SizeGripStyle Auto =

Menu

The main menu of the Form. This
should be set to a component of ...

"7 TaskList | Bl output |

E5 Properties | @ Cynamic Help |

[Ready I I

| 4

Figure 5.4 Set Forml.Size.

5.2 How to Create Menus

To add a menu bar to a form:

1. Add a “MainMenu” control to a form from the toolbox. The control will appear in the
component Design Tray at the bottom of the Form Design window. The menu of a form is

49

determined by the Menu property. The menu property of the form will be set to the name of the
“MainMenu” control you just added.

2. To add items to the menu, click the “MainMenu” control and click wherever it says “Type
Here” in the menu designer. Then, type the text of the menu item and press the Enter key.
Additional entry areas appear below and to the right of the entry.

3. To edit the property for each menu item, right-click the menu and select the Property
command.

5.3 Link to Class Library

@0 chapb - Microsoft Yisual C# NET [design] N Im| 1'

File Edt Wew Projct Buld Debug Tooks Window Help

- SH@| L ER oo BB) g

- ‘ 4 InitiskzsComponent

®oqieaL){j @ I

- [F] AssemblyInfo.cs
Form1.cs

i [EE] Parameter_BicFilter.cs
parameter_Reduction.cs

| output 7 x|
H
TaskList] output | B3 Find Results 1 \% Index Results | [Q Solution Explorer Properties |
[Resdy I [| 4

Figure 5.5 References In Solution Explorer.

In this section, XYZ denotes any class located in c:\transapplet70\. To use the class library,
“Attrasoft. TransApplet70.XYZ:

(1) Add a “using” statement:
using Attrasoft. TransApplet70.XYZ;

(2) Right click References and select Add reference in the Solution Explorer (Figure 5.5);
(3) Use the Browse button to find “XYZ.dIl”’; highlight the library under “Selected Components” and
click the “OK” button.

Now the class library, “Attrasoft.TransApple70.XYZ”, is ready to be used. To make sure the link is
successful, you should see XYZ under References in the Solution Explorer.

50

©chapb - Microsoft Yisual C# .NET [design]
Edit Wew Project Build Debug Tools Window Help

e S @[BB oo E-B] e

Xog|oaL){j @

- ‘ 4 InitiskzsComponent

B2 E-,

Solution Explorer - chapé 1 x

ealFsi="

[e8 Solution ‘chapé’ (1 project)

B IE,E chapb

= & References

+(0 Accessibility

+3 Interfacesd

+J System

(3 System.Data

=2 System.Drawing

+{3J System Windows.Forms
(0 System XML

+0 Testéd

App.ico

[#] Assemblyinfa.cs
Form1.cs
Parameter_BicFilter.cs

i [E parameter_Reduction.cs

| output 7 x|
Debug j
‘chapé.exe': Losded 'o:'windews)assembly\gachsysten. dravingtl.0.3300.0_ bO3f5£7ElldE0a3al:~
‘chapé.exe': Loaded 'c:\transapplet63)chapfibinidebugitests3.dll', No symbols loaded.
‘chapé.exe’': Losded 'o:\transapplet63)chapéibinidebuglinterfacesd.dll’, No symbols loaded
‘chapé.exe': Loaded ‘c:\uindnus\assemhly\gac\accassmllmy\1,n,aann,n_hnafsf'.:fudsnaaa\a(J
The program '[3204] chap6.exe' has exited with code 0 (0x0.
4 | »
Tasklist] output | SR Find Results 1 | 2) Indes Results | [Solution Explarer | 22! Properties |
| Ready | [| 4

Figure 5.6 Solution Explorer after linking a class library.

5.4 Declare Objects

Each Library has one main class, which has the same name as the Library-name:

Attrasoft.transapplet70.Batch70.Batch70
Attrasoft.transapplet70.BioFilter70.BioFilter70

The advantage of naming the class-name as the library-name is that you will know what to use,
ie.

e if you go to Library, “Attrasoft.transapplet70.Batch70”, use Batch70 class;

e if you go to Library, “Attrasoft.transapplet70.BioFilter70”, use BioFilter70 class, ...

There is no guessing which class you should choose if the Library has more than one class.

The disadvantage is the compiler will not be able to distinguish between the class-name and the
Library-name unless you use the full name.

To make a long story short, declare all TransApplet objects using the full class-name like this:

public Attrasoft. TransApplet70.Test70.ImageProcessing70 ip70

= new Attrasoft. TransApplet70.Test70.ImageProcessing70 ();
public Attrasoft. TransApplet70.Test70.BioFilter70 bf70

=new Attrasoft. TransApplet70.Test70.BioFilter70 ();

51

6. Input

This chapter describes how to enter data to the ImageFinder. The input images are further divided
into:

e Key
e Search Source.

The Search Source is further divided into:

Search-Directory (A directory containing images to be searched);

Search-File (A file containing the images to be searched);

Sub-Directory (A directory containing sub-directories with images to be searched);
Segment-File (A file containing image segments to be searched);

An Image Path specifies the training image. A Search-Folder or Search-File specifies the Search
Source.

This chapter will introduce the class library, “Attrasoft.transapplet70.Input70”. The chapter project is
in “c:\transapplet70\ transapplet70.chap6”.

6.1 Class Library Name

The class library is:

Attrasoft. TransApplet70.Input70.
The main class in this library will be:

Attrasoft. TransApplet70.Input70.Input70.
The Input70 interface is:

public interface I_Input

{ string [] getDirList (string sInput);

string [] getSubDirList (string sInput);

string [] getFileList (string sInput);
string [] getFileSegmentList (string sInput);

string [] getAccessList (string sInput, string sSQL);
string [] getAccessSegmentList (string sInput, string sSQL);

52

string [
string [
string [
string [
string [
string [
string [
string [

getID ();

getName ();
getPath ();
getAbsolutePath ();
getX ();

getY ();

getW ();

getH ();

e e e e e e e

6.2 Class Library Overview

The functions in Input70 class are listed in the following table.

Function

Description

string [] getDirList (string sInput)

Gets a string list of the absolute paths of all
images in directory, sInput.

string [] getSubDirList (string sInput)

Gets a string list of the absolute paths of all
images in all sub-directories of sInput.

string [] getFileList (string sInput)

Gets a string list of the absolute paths of all
images in file, sInput.

string [] getFileSegmentList
('string sInput)

Gets a string lists of the absolute paths of
all images in file, sInput. This command
will also populate other arrays so they can
be obtained through the following function:

string [] getID ();

string [] getName ();

string [] getPath ();

string [] getAbsolutePath ();

string [] getX ();

string [] getY ();

string [] getW ();

string [] getH ().

string [] getAccessList
('string sInput, string sSQL)

Gets a string list of the absolute paths of all
images in access file, sInput, specified by a
SQL statement, sSQL.

string [] getAccessSegmentList
('string sInput, string sSQL)

Gets a string list of the absolute paths of all
images in access file, sInput, specified by a
SQL statement, sSSQL. This command will
also populate other arrays so they can be
obtained through the following function:

string [] getID ();

string [] getName ();

string [] getPath ();

string [] getAbsolutePath ();

53

string [] getX ();
string [] getY ();
string [] getW ();
string [] getH ().

string [
string [
string [

getlD ()
getName ()
getPath ()

Gets a string list of the ID, Name, Path,
Absolute Path, X, Y, W, and H of all
images in a search source.

getAbsolutePath ()
getX ()
getY ()
getW ()
getH ()

string [
string [
string [
string [
string [

e e e e e e

6.3 Set Up the Chapter Project

@Forml i 2] il
Key I |C.\Iran5applet?ﬂ\ex_wheel\ZUE?ﬂ)|pg Clear

Source I‘E)“E’U’(2 Dir

Display Key Segment:
Chtransapplet? 0iex_whesh2067(1) jpg

Figure 6.1 Chapter 6 Project.
We will add the following controls to our form:

Key Button, Key Text Box
Use the “Key” button to display the selected key image and print the image path in the key text
box. For example, click the button, go to the directory, "C:\transapplet70\ex_wheel", and then
select an image. The selected image will be shown in the ImageFinder to indicate the
specification is successful and the key-image is ready for training or retraining.

Source Button, Source Text Box
Use the “Source” button to select a search source and display the source in the text box.

Clear Button
Use the “Clear” button to clear the rich text box.

54

Type Button

Use the “Type” button to select a search source type, which includes:
string [] strMode = { "Dir", "File", "Sub Dir", "F Segment" };

Rich Text Box
Use Rich Text Box to display messages.

Left Picture Box

Use the Left Picture Box to display key images.

Right Picture Box
Use the Right Picture Box to display images

in the search source.

After adding these controls, the form will look like Figure 6.1.

First, we want to add an Open File Dialog to the chapter 6 project. To add Open File Dialog to a form:

Add “OpenFileDialog” control to a form from the toolbox. The control will appear in the

component Design Tray at the bottom of the Form Design window.

6.4 Link to Class Library

Click the proper buttons to add the code, which will be the next section.

#% transapplet.chapt - Microsoft Visual & NET [design] - Input.cs o e |i|
Ble Edit Wew Project Buld Debug Took Window Help
- | fBER 9o E-B|) Debug ~ | reToAbs - REE®E 7
AT a | EE 2| AN
E Forml.cs [Design] Input.cs ‘ Formil.cs | b x |SOIUUOn Explorer -fra.. £ X |
bed Ial:transappletchapﬁ.lnput ﬂ |'='-.Imput(FDrm1 13 LI =
= ‘ T
2 -orking directory = & @ References =
= 7 3 g 2 e’ — 1ML
T - 4 Wil L.
o rnal string softwareDir Application.StartupPath ANNE P2 Systam
f i+ System.Data
= System Drawing
[ic Input{Forml f£1) Lo o0 Gystem.iindows
Looedsystemaml
ra App.ico
// ToDO: Add constructor logic here - nessmbhin.Co § =
i @Sn\u”. gc\as‘.. \ Indesx |
= new Attrasoft.Trs let70.Input?0.Input70 { f.rich |Properties T x |
-
-
| Aj
< | S EAE
|output 1 x|
Debug LI
'transapplet.chapé.exe': Loaded 'c:itransapplet70\transapplet?0.chap6ibinidebl a
'transapplet.chapé.exe': Loaded 'c:hvwindowshassewbly gachsystem.dacal1.0.5000.
'transapplet.chap6.exe': Loaded 'c:ywindows)assenblytgac)system.xmli1.0.5000.0_ |
The progrem '[2248] transapplet.chapf.exe' has exited with code 0 (0x0). -
«| | »
Task List _E Output | B Find Results 1 | By inclexc Results | | F‘rnperties‘ @ Oynamic H... |
| Ready | [IREE col 83 ch 74 [ms]

Figure 6.2 Link to Class library Input70.

To include the class library to the project,

55

e Right click References and select Add Reference in the Solution Explorer;
e Browse to find “Input70.dll” in “c:\transapplet70”;
e Highlight it and click the “OK” button (Figure 6.2).

To use the class library, add:
using Attrasoft. TransApplet70.Input70;
To declare an object, please use the full path for class:

public Attrasoft. TransApplet70.Input70.Input70 in70;
in70 = new Attrasoft. TransApplet70.Input70.Input70 (f.richTextBox1);

Now, the Input70 object, in70, is ready to use.

6.5 Key Segment

We will add a class, “Input”, in the project. We will implement the input buttons in this class. In this
way, the main class is simpler. We will declare an object, input, as follows:

Input input;
public Form1()
{

InitializeComponent();
input = new Input (this);

}

We can double click the Key Segment buttons to complete the programming:

private void button1_Click(object sender, System.EventArgs e)

{
}

input.keySegment();

which in turn, calls a function in the following class:

public class Input

{
Forml f;

public Attrasoft. TransApplet70.Input70.Input70 in70 ;
internal Bitmap bTrain;
internal string softwareDir = Application.StartupPath + '\\';

public Input(Form1 f1)

{
f="1fl;
in70 = new Attrasoft. TransApplet70.Input70.Input70

56

(f.richTextBox1);
}

void appendText (string s)
{

}

f.richTextBox1.AppendText (s);

public bool keySegment()

{
if (f.openFileDialogl.ShowDialog () != DialogResult.OK)

return false;

string fileName = f.openFileDialog1.FileName;

try
{
bTrain =new Bitmap (fileName);
f.pictureBox1.Image = bTrain;
f.textBox1.Text = fileName ;
f.richTextBox1.AppendText
("Display Key Segment:\n " + fileName +"\n");
}
catch

appendText ("Invalid key image !\n");
return false;

}

return true;
}//keySegment()

}

The first section of code opens a file dialog so the user can select a file:

if (f.openFileDialogl.ShowDialog () != DialogResult.OK)
return false;

The next section of code gets the selected key:
string fileName = f.openFileDialog]1.FileName;

The last section of code creates an image and displays the image:
bTrain =new Bitmap (fileName);
f.pictureBox1.Image = bTrain;

f.textBox1.Text = fileName ;
f.richTextBox1.AppendText ("Display Key Segment:\n " + fileName +"\n");

57

6.6 Search Source Button

The search source can be:
Search-Directory,
Search-File,
Sub-Directory, and
Segment-File.

For more information, please see the ImageFinder User’s Guide. The “Type” button specifies the
search-source:

string [] strtMode = { "Dir", "File", "Sub Dir", "F Segment" };
internal int iMode = 0;

private void button3_Click(object sender, System.EventArgs e)

{
iMode = (iMode + 1)% strMode.Length ;

if iMode ==0)

button3.Text = strMode[0];
else if (iMode ==1)

button3.Text = strMode|[1];
else if (iMode ==2)

button3.Text = strMode|[2];
else if (iMode == 3)

button3.Text = strMode[3];

}

Now, we implement the “Source” button:

private void button2_Click(object sender, System.EventArgs e)

{
}

input.searchSource(iMode);

which in turn, calls the following function in the Input class:

public void searchSource (int iMode)
{

if (iMode ==0)
searchSource0 ();

else if (iMode == 1)
searchSourcel ();

else if (iMode ==2)
searchSource?2 ();

else if (iMode == 3)
searchSource3 ();

else

58

searchSource0 ();
}//searchSource

The search source can be:
Search-Directory,
Search-File,
Sub-Directory, and
Segment-File.

For Search-Directory, the implementation is:

private void searchSourceQ ()//dir

{
if (f.openFileDialogl.ShowDialog () != DialogResult.OK)
return;
string cDir = System.IO.Directory.GetCurrentDirectory();
f.textBox2.Text = cDir;
f.richTextBox1.AppendText (cDir +"\n");
filelist = in70.getDirList(cDir);
if (filelist ==null)
return;
if (filelist.Length ==0)
return;
f.richTextBox1.Text ="";
for (int i= 0; 1 < filelist.Length ; i++)
f.richTextBox1.AppendText ("" +1+ " " +filelist[i] +"\n");
f.pictureBox2.Image = new Bitmap (filelist[0]);
f.richTextBox1.AppendText ("Display the first image!\n");
}

The first section of code gets the current search directory via the open file dialog:

if (f.openFileDialogl.ShowDialog () != DialogResult.OK)
return,;
string cDir = System.IO.Directory.GetCurrentDirectory();
The next section gets a string list of the image paths:
filelist = in70.getDirList(cDir);

The third section prints the string list of the image paths:

f.richTextBox1.Text ="";

59

for (int i= 0; 1 < filelist.Length ; i++)
f.richTextBox1.AppendText ("" +1+ " " +filelist[i] +"\n");

The last section displays the first images:

f.pictureBox2.Image = new Bitmap (filelist[0]);
To test, run the software and click the first image in folder, “c:\transapplet70\ex_wheel”.
Now, we implement Search-File:

private void searchSourcel ()//file

{
if (f.openFileDialogl.ShowDialog () != DialogResult.OK)
return,;
string cDir = f.openFileDialog]1.FileName ;
f.textBox2.Text = cDir;
f.richTextBox1.AppendText (cDir +"\n");
filelist = in70.getFileList (cDir);
if (filelist ==null)
return;
if (filelist.Length ==0)
return;
f.richTextBox1.Text ="";
for (int i= 0; 1 < filelist.Length ; i++)
f.richTextBox1.AppendText ("" +1i+ " " +filelist[i] +"\n");
f.pictureBox2.Image = new Bitmap (filelist[0]);
f.richTextBox1.AppendText ("Display the first image!\n");
}

There is only one line difference between Search-Directory and Search-File:
filelist = in70.getFileList (cDir);
The rest of the code is identical to Search Directory.
To test, run the software and select file, “c:\transapplet70\ex_wheel\input_filel.txt”.
Now, we implement Sub-Directory and File-Segment:
private void searchSource2 ()//sub

{
if (f.openFileDialogl.ShowDialog () != DialogResult.OK)

return,

60

string cDir = System.IO.Directory.GetCurrentDirectory();

f.textBox2.Text = cDir;
f.richTextBox1.AppendText (cDir +"\n");

filelist = in70.getSubDirList (cDir);
if (filelist ==null)

return;
if (filelist.Length ==0)

return;

f.richTextBox1.Text ="";
for (int i= 0; 1 < filelist.Length ; i++)
f.richTextBox1.AppendText ("" +1+ " " +filelist[i] +"\n");

f.pictureBox2.Image = new Bitmap (filelist[0]);
f.richTextBox1.AppendText ("Display the first image!\n");

}
private void searchSource3 ()
{
if (f.openFileDialogl.ShowDialog () != DialogResult.OK)
return;
string cDir = f.openFileDialog]1.FileName ;
f.textBox2.Text = cDir;
f.richTextBox1.AppendText (cDir +"\n");
filelist = in70.getFileSegmentList (cDir);
if (filelist ==null)
return;
if (filelist.Length ==0)
return;
f.richTextBox1.Text ="";
for (int i= 0; i < filelist.Length ; i++)
f.richTextBox1.AppendText ("" +1+ " " +filelist[i] +"\n");
f.pictureBox2.Image = new Bitmap (filelist[0]);
f.richTextBox1.AppendText ("Display the first image!\n");
}

Again, there is only one line difference between Search-Directory and these two functions.

To test the Sub-Directory, run the software and click the first image in folder,
“c:\transapplet70\ex_wheel\”.

61

To test Segment-File, run the software and select file, ‘“c:\transapplet70\ex_wheel\
input_filesegment1.txt”.

62

7. Image Display

This chapter describes how to display images in a search source. The images are further divided into:

Search-Directory (A directory containing images to be searched);

Search-File (A file containing the images to be searched);

Sub-Directory (A directory containing sub-directories with images to be searched);
Segment-File (A file containing image segments to be searched);

To display these search images, three buttons will do:

First Button
Use the “First” button to display the first image in the search source.
> (Next) Button
Use the “Next” button to display the Next image in the search source.
< (Previous) Button
Use the “Previous” button to display the Previous image in the search source.

After adding the three buttons, the form looks like Figure 7.1.

il x|

Key | ICIick Key button to select a kel Clear
SauEs | JtextBox2 Dit

J

First H 4

Figure 7.1 First, Next, and Previous Buttons.

7.1 Class Library Name

63

The class library is:
Attrasoft. TransApplet70.ImageList70.
The class in this library will be:
Attrasoft. TransApplet70. ImageList70. ImageList70.

The functions in this class are:

Function Description

void setList (string [] seachDirList1) Sets an input list of image paths.
bool getStatus () Gets the status.

string getFirst () Gets the first image path.

string getNext () Gets the next image path.

string getPrevious () Gets the previous image path.

In the last chapter, we obtained the string list of the image path. Basically, we will enter this list to an
ImageList70 object and then, use the getFirst (), getNext(), and getPrevious () functions to display the
images.

7.2 Link to Class Library

To include the class library to the project:

e Right click References and select Add Reference in the Solution Explorer;
e Browse to find “ImageList70.d1l” in “c:\transapplet70\”;
e Highlight it and click the “OK” button.

To use the class library, add:
using Attrasoft. TransApplet70.ImageList70;
To declare an object, please use the full path for class:
Attrasoft. TransApplet70.ImageList70.ImageList70 image AbsoultePathList

=new Attrasoft. TransApplet70.ImageList70.ImageList70 ();

7.3 Implementing Buttons

In this section, we will implement the First, Next, and Previous buttons.
To see images in a search source, start with the “First” button and then, keep clicking the “Next”
button to display the next image; eventually, all of the images in the search source will be shown.

The code for the three buttons consists of three parts:

e Populating ImageList70 Object;
64

e Functions for buttons, which in turn will call functions in the Input objects;
e Implementation functions in the Input objects.

First of all, the ImageList70 object has to be populated. This can be accomplished by adding a single
line of code in the last chapter:

private void searchSource0 ()

{
f.pictureBox2.Image = new Bitmap (filelist[0]);
f.richTextBox1.AppendText ("Display the first image!\n");
imageAbsoultePathList.setList (filelist);
}
private void searchSourcel ()
{
f.pictureBox2.Image = new Bitmap (filelist[0]);
f.richTextBox1.AppendText ("Display the first image!\n");
imageAbsoultePathList.setList (filelist);
}
private void searchSource?2 ()
{
f.pictureBox2.Image = new Bitmap (filelist[0]);
f.richTextBox1.AppendText ("Display the first image!\n");
imageAbsoultePathList.setList (filelist);
}
private void searchSource3 ()
{
f.pictureBox2.Image = new Bitmap (filelist[0]);
f.richTextBox1.AppendText ("Display the first image!\n");
imageAbsoultePathList.setList (filelist);
}

Secondly, the code for the “First” button is:
private void button5_Click(object sender, System.EventArgs e)

{
input.firstButton(iMode);

65

}
Similarly, the code for the “Next” button and the “Previous” button are:

private void button6_Click(object sender, System.EventArgs e)
{

}

input.nextButton (iMode);

private void button7_Click(object sender, System.EventArgs e)

{
}

input.previousButton (iMode);

Finally, in the Input class, these functions are implemented:

public void firstButton (int iMode)
{
try
{
appendText (imageAbsoultePathList.getFirst ()+"\n");
bSearch =new Bitmap (imageAbsoultePathList.getFirst ());
f.pictureBox2.Image = bSearch;

}

catch

{
appendText ("Invalid image!\n");
return;

}

}

public void nextButton (int iMode)
{
try
{
appendText (imageAbsoultePathList.getNext () +"\n");
bSearch =new Bitmap (imageAbsoultePathList.getNext ());
f.pictureBox2.Image = bSearch;

}

catch

{
appendText ("Invalid image!\n");
return;

}

}

public void previousButton (int iMode)
{
try

{
appendText (imageAbsoultePathList.getPrevious () +"\n");

bSearch =new Bitmap (imageAbsoultePathList.getPrevious ());
f.pictureBox2.Image = bSearch;

}

catch

{
appendText ("Invalid image!\n");
return;

7.4 Test

This section tests the project:

() Run the project;

2) Click the “Key” button, go to “c:\transapplet70\ex_wheel\”, and select a key image;
3) Click the “Source” button, go to “c:\transapplet70\ex_wheel\”, and select an image.
4) Click the “First” button;

5 Click the “Next” button several times;

(6) Click the “Previous” button several times.

7.5 Output Images

In the last a few sections, we demonstrated how to display Input Source images. After a matching, the
output images will be displayed in a similar fashion. We will enter a string list of matched images to an
ImageList70 object and then, use the getFirst (), getNext(), and getPrevious () functions to display the
images.

67

8. Image Preprocessing

Attrasoft ImageFinder learns an image in a way similar to human eyes:

e Ignore the background;
e Focus on an object in the image.

The Image Preprocessing in this chapter and the Image Processing in the next chapter prepare the
image for the ImageFinder. The Image Processing process is not unique; there are many options
available. Some are better than others.

The principle of choosing the Image Preprocessing and Image Processing filters is to make the sample
objects stand out, otherwise change the options.

Image Preprocessing has the following functions:

Cut off the border areas;
Impose a mask;

Speed up the computation;
Skip the empty border areas;

If you do not have a good Image Preprocessing/Processing filter in the off-the-shelf ImageFinder, a
customized filter has to be built.

Do not make too many things stand out, i.e. as long as the area of interest stands out, the rest should
show as little as possible.

Key I |taxtBUx1 Fararneter | Clear |

Preprocessing Image

Figure 8.1 Chapter 8 project.

68

@Preprocessiﬁg Parameters | il

Border Cut |.]7 (0% - 50%)

MaskOoywh,tpe [T o [o [0 0
Mask Type, 0: ignore; 1: pixel value; 2 percentage value

Stick Shift o (0-5)

Skip Empty Border: lui

0 (Nothing); 1(Light Background); 2{Dark Background); 3(Light
percent); 4(Dark Percent); 5(Threshold Filter); B (Threshold
Filter Percent)

Skip Percent i}
Skip Threshold Filter |5 Edge i}

OK Cancel

4

Figure 8.2 Image Preprocessing Parameters.

8.1 Image Preprocessing Filter

To set the Image Preprocessing Filter parameters, click the Parameter button in Figure 8.1; then click
the Parameter button again, and you will see Figure 8.2. You will set the Image Preprocessing
parameters on Figure 8.2. The “OK” button in Figure 8.2 enters the parameters to the Preprocessing
filter.

To see the effect of the Image Preprocessing and Image Processing filters, you have to select a key
image via the Key button. The image will be displayed on the left. Then click the “Preprocessing
Image” button to apply the preprocessing filter and see the processed image on the right.

8.2 PreProcessing API

The Image Preprocessing interface is:

public interface I_ImagePreProcessing70
{
int getMaskX();
void setMaskX(int x);
int getMaskY ();
void setMaskY (int x);
int getMaskW();
void setMaskW (int X);
int getMaskH();
void setMaskH(int x);
int getMaskType();
void setMaskType(int x);

int getBorderCut();
void setBorderCut(int x);

69

int getStickShift();
void setStickShift(int x);

void setSkipEmptySpaceType(int x);

int getSkipEmptySpaceType();

void setSkipEmptySpacePercentage(int x);
int getSkipEmptySpacePercentage();

void setSkipEmptySpaceThresholdFilter(int x);
int getSkipEmptySpaceThresholdFilter();

void setSkipEmptySpaceEdgeFilter(int x);
int getSkipEmptySpaceEdgeFilter();

Bitmap getPreProcessinglmageBW (Bitmap bImg);
Bitmap getPreProcessinglmageColor (Bitmap bImg);

}

The following table lists the functions.

Functions

Description

int getMaskX();

void setMaskX(int x);
int getMaskY ();

void setMaskY (int x);
int getMaskW();

void setMaskW (int X);
int getMaskH();

void setMaskH(int x);
int getMaskType();

void setMaskType(int x);

Sets and gets mask (x, y, w, h) and mask
type.

int getBorderCut(); Sets and gets Border Cut.
void setBorderCut(int x);
int getStickShift(); Sets and gets Stick Shift.

void setStickShift(int x);

void setSkipEmptySpaceType(int x);
int getSkipEmptySpaceType();

void setSkipEmptySpacePercentage(int x);
int getSkipEmptySpacePercentage();

void
setSkipEmptySpaceThresholdFilter(int x);
int getSkipEmptySpaceThresholdFilter();

Sets and gets parameters for Skip Empty
Space.

70

void setSkipEmptySpaceEdgeFilter(int x);
int getSkipEmptySpaceEdgeFilter();

Bitmap getPreProcessinglmageBW Get preprocessed image from an input
(Bitmap blmg); image, bImg.

Bitmap getPreProcessinglmageColor

(Bitmap blmg);

To add an image preprocessing object, add:

Attrasoft. TransApplet70.ImagePreProcessing70.ImagePreProcessing70 ipre70;

private void Form1_Load(object sender, System.EventArgs e)

{

ipre70 = new Attrasoft. TransApplet70.ImagePreProcessing70

.ImagePreProcessing70 (richTextBox1);

richTextBox1.Clear ();

}

8.3 Enter Parameters

Clicking the “OK” button on Figure 8.2 will enter the parameters to the Image Pre-processing filter.
The “OK” button is implemented as follows:

private void button1_Click(object sender, System.EventArgs e)

{
try

{

ipre70.setMaskX (int.Parse (textBox1.Text)) ;

ipre70.setMaskY (int.Parse (textBox2.Text)) ;

ipre70.setMaskW (int.Parse (textBox3.Text)) ;

ipre70.setMaskH (int.Parse (textBox4.Text)) ;

ipre70.setMaskType (int.Parse (textBox11.Text)) ;
ipre70.setBorderCut (int.Parse (textBox5.Text)) ;
ipre70.setStickShift (int.Parse (textBox6.Text)) ;
ipre70.setSkipEmptySpaceType (int.Parse (textBox7.Text)) ;
ipre70.setSkipEmptySpacePercentage (int.Parse (textBox8.Text)) ;

ipre70.setSkipEmptySpaceThresholdFilter (int.Parse (textBox9.Text)) ;
ipre70.setSkipEmptySpaceEdgeFilter (int.Parse (textBox10.Text)) ;

71

this.Close();

MessageBox.Show ("Please enter valid integers", "Entry Error");

8.4 Cut Off the Border Areas

Let us assume we want to cut off 10 % of the border; click the ‘“Parameter” button; and then click the
parameter button again. You will see Figure 8.2. Enter 10 to the first textbox in Figure 8.2. Click the
“Key” button and select an image from “c:\transapplet70\ex_wheel\”. Click the “Preprocessing Image”
button and you will have Figure 8.3. You will see that the second image is the first image with 10% of

the border cut off.

ﬂglmage Preprocessing e | il
Key | |C\transapp\et?U\transappIet?U.:hapB\bin\Debug\autDE\EUE?U)jpg Farameter | Clear |

Citransapplet?d
ransapplet?0.chapdibiniDebug
hauto 22067 (1) jpg

320 240

(. H) = 256 192

Preprocessing Image

Figure 8.3 Five Percent Border Cut.
The implementation of the “Preprocessing Image” button is:

private void button11_Click(object sender, System.EventArgs e)

{
if (bl == null)
{
richTextBox1.AppendText ("Please select an image");
return,;
}

b2 = ipre70.getPreProcessinglmageColor (bl);
pictureBox2.Image = b2;
richTextBox1.AppendText

72

("(W,H)="+b2.Width + " " + b2.Height + "\n");
}

8.5 Impose a Mask

Let us assume we want to cut off 20% of the border on top, 20% on the left, 10% on the right, and 10%
on the bottom, then enter (20, 20, 70, 70, 2) to the second row textboxes in Figure 8.2. Click the
“Preprocessing Image” button and we will have Figure 8.4.

In Figure 8.4, you will see the second image is the first image with a mask (20%, 20%, 70%, 70%).
Here 2 in (20, 20, 70, 70, 2) means in percentage rather than pixels. You will see that the second image
is the first image with the following cut: cut off 20 % of the border on top, 20% on the left, 10% on the
right, and 10% on the bottom.

ﬂglmage Preprocessing =] il
Key | IC\traﬂsapp\et?U\transappIet?U.:hapB\bln\Debug\aulDE\EUE?ﬂ)|pg Parameter | Clear |

Citransapplet?l
\transapplet?0.chap8ibimDebug

f
hauto2\2067(1) jog
320 240
[W. H) = 256 192 \
(W, H) = 224168 .
i

Preprocessing Image

\§

Figure 8.4 Mask (20, 20, 70, 70, 2).

Now, if we use pixels rather than percentage, enter (20, 20, 70, 70, 1) to the second row textboxes in
Figure 8.2 and we will have Figure 8.5.

ﬂglmage Preprocessing e | il
Key | |C\transapp\et?U\transappIet?U.:hapB\bin\Debug\autDE\EUE?U)jpg Farameter | Clear |

Citransapplet?d
ransapplet?0.chapdibiniDebug
hauto 22067 (1) jpg

320 240

(. H) = 256 192

(. H) = 224168

(. Hy=7070

Preprocessing Image

Figure 8.5 Mask (20, 20, 70, 70, 1).

73

8.6 Speed Up the Computation

To speed up the computation, set the parameter “Stick Shift” in Figure 8.2 between 0 and 5, with 0
being the slowest and 5 being the fastest.

8.7 Skip the Empty Border by Content Percent

The last function for the Preprocessing filter is to skip border by content percent, not pixel percent.
The “Skip Empty Border” field in Figure 8.2 specifies the type:

No skip;

Skip the white empty border space;

Skip the black empty border space;

Skip x percent of the contents on the white background space;

Skip x percent of the contents on the black background space;

Skip empty border space on the user defined Threshold Filter;

Skip x percent of the contents on the user defined Threshold/Edge Filters.

NNk W= O

We will discuss Threshold/Edge Filters in the next chapter, Image Processing.

Example 1. Set “Skip Empty Border” = 2, means skipping the black empty space on the edge. The
result is shown in 8.6; you will see that the second image is the first image without a black border.

ﬂglmage Preprocessing = il
| |C\transapp\et?ﬂ\transapplet?ﬂ chapBibiniDebug\auto22067(1)jpg Farameter Clear |
Citransapplet?d
\Iraﬂsapplel?ﬂ Chapﬁ\bm\Debug
hautoZy2067(1),
320 240
(W, H) = 256192
(W, H) 224168
(W, H)=7070
(W, H) = 248 237

Preprocessing Image

Figure 8.6 Skipping the black empty space.
Example 2. Set “Skip Empty Border” = 4, means skipping the black empty space on the edge. Set

“Skip percent” = 10. The result is shown in Figure 8.7; you will see that the second image is the first
image with 10% of the contents cut on each side.

74

[1mage Preprocessing ~=[ofx|

Key IC\traﬂsapp\et?U\transappIet?U.:hapB\bln\Debug\aulDE\EUE?ﬂ)|pg Parameter | Clear |

Citransapplet?l
\transapplet?0.chap8ibimDebug
\auth\ZDE?(U Jpg

320 2

W, H) 256192
W, H) = 224 168
[H) =70 70
[, H) = 248 237
P, H) = 207 194

Preprocessing Image

Figure 8.7 Skipping 10% of the contents on the black background.

75

9. Image Processing

Attrasoft ImageFinder learns an image in a way similar to human eyes:

e Ignore the background;
e Focus on an object in the image.

The Image Preprocessing in the last chapter and the Image Processing in this chapter prepare the image
for the ImageFinder.

The Image Processing process is not unique; there are many options available. Some are better than

others. Image Processing can make it or break it. For many problems like fingerprints, palm
prints, ..., special image processing filters will be required.

9.1 Good & Bad

The principle of choosing the Image Preprocessing and Image Processing filters is to make the sample
objects stand out, otherwise change the options.

Do not make too many things stand out, i.e. as long as the area of interest stands out, the rest should
show as little as possible.

ﬂgAttrasoft ImageFinder 7.0, http://attrasoft.com o sl il
Signature Unsupervised BioFilter MeuralFiter Library MeuralMet Counfing Batch Settings Examples Help

Kev |C\hu3?s\abm71,lmageﬂnder?[l\:nde\bm\Debug\spch\VfITFDDAIfPARTEH7532Jpg Change Plav/Ston
Source |C\|ck Mode to select an input type, then Source ta select a source Mode Live

Matching | Help Image Frocessing

crsine S

Display processing Image: (433, 260)

Figure 9.1 Bad Image Processing Example.

76

ﬂgAttrasoft ImageFinder 7.0, http://attrasoft.com == 1[
Signature Unsupervised BioFilter MeuraFiter Library MeuralMet Counting Batch Setings Examples Help

Key |C\\iu3_5\abm71_imageﬂnder?ﬂ\cude\bm\Debug\sp_MV—ITFDULI-PARTDW-B32.Jpg Change Plaw/Ston
Source |C\i|:|< Mode to select aninput type. then Source to selecta source Made Live

Matehing | Help Image Processing |

Display processing Image: (433, 260)

Figure 9.2 Good Image Processing Example.

In Figure 9.1, the first image is the selected key image. The objective is to identify the logo, “2004
Davis Cup ...".

S
Image Preprocessing | [— |
Image Processing [Mone |
[o. Defaut ~|
[Mane |
oK |

Figure 9.3 Image Processing Setting.
First of all, let us use the setting:

Edge Filter =2
Threshold Filter = 1
Clean-Up Filter =2

The second image in Figure 9.1 is a preprocessed image; and the third image in Figure 9.1 is the
processed image. This is a bad example of image processing, because the sample object, ‘2004 Davis

Cup ...”, does not stand out.

Now, we will try a different setting:
77

Edge Filter =0
Threshold Filter = 1
Clean-Up Filter = 16

The third image in Figure 9.2 is the processed image. This is a good example of image processing,

because the sample object, 2004 Davis Cup ...”’, does stand out.

9.2 Processing API

The Image Processing interface is:

public interface I_ImageProcessing70

{

string [] getEdgeFilterNames();

int getEdgeFilterDefaultIndex();
string [] getThresholdFilterNames();
int getThresholdFilterDefaultIndex();
string [] getCleanUpFilterNames();
int getCleanUpFilterDefaultIndex();

int getDoubleIlmageProcessing ();
void setDoublelmageProcessing (int x);

bool setlmage (Bitmap sImageName);
bool imageProcess();

void setEdgeFilter(int x);
int getEdgeFilter();
bool getEdgeFiltersStatus();

void setThresholdFilter (int Xx);
int getThresholdFilter ();
bool getThresholdFiltersStatus();

void setCleanUpFilter (int x);
int getCleanUpFilter ();
bool getCleanUpFilterStatus();

void setR1(int x);
int getR1();
void setR2(int x);
int getR2();
void setR3(int x);
int getR3();

78

void setG1(int Xx);
int getG1();
void setG2(int X);
int getG2();
void setG3(int Xx);
int getG3();
void setB1(int x);
int getB1();
void setB2(int x);
int getB2();
void setB3(int x);
int getB3();
}//[image processing

The following table lists the functions.

Functions

Description

string [] getEdgeFilterNames();

int getEdgeFilterDefaultIndex();
string [] getThresholdFilterNames();
int getThresholdFilterDefaultIndex();
string [] getCleanUpFilterNames();
int getCleanUpFilterDefaultIndex();

Gets the basic info about Edge filter,
Threshold filter, and Clean-Up filter.

int getDoubleIlmageProcessing ();
void setDoublelmageProcessing (int x);

Sets and gets the “Double Processing”
parameter.

bool setlmage (Bitmap sImageName);

Sets the input image for the Image
Processing filters, which is also the output
image; i.e. the image processing is applied
to the image directly.

void setEdgeFilter(int x);
int getEdgeFilter();
bool getEdgeFiltersStatus();

void setThresholdFilter (int x);
int getThresholdFilter ();
bool getThresholdFiltersStatus();

void setCleanUpFilter (int x);
int getCleanUpFilter ();
bool getCleanUpFilterStatus();

Sets and gets Image Processing filters.

bool imageProcess();

Apply the image-processing filter to the
input image. The input image is also the
output image, because the filter is applied
to the image directly.

void setR1(int x);

Sets and gets Threshold Filter parameters.

79

int getR1();
void setR2(int x);
int getR2();
void setR3(int x);
int getR3();
void setG1(int X);
int getG1();
void setG2(int X);
int getG2();
void setG3(int X);
int getG3();
void setB1(int x);
int getB1();
void setB2(int x);
int getB2();
void setB3(int x);
int getB3();

To add an image-processing object, add:

Attrasoft. TransApplet70.ImageProcessing70.ImageProcessing70 ip70;
private void Form1_Load(object sender, System.EventArgs e)
{
ipre70 = new Attrasoft. TransApplet70.ImagePreProcessing70 .
ImagePreProcessing70 (richTextBox1);
ip70 = new Attrasoft. TransApplet70.ImageProcessing70.ImageProcessing70 ();
richTextBox1.Clear ();

}

9.3 Set Image Processing Filters

The image processing will be applied to all images before recognition. As far as the operation is
concerned, this means setting three filters:

Edge Filters;
Threshold Filters; and
Clean-Up Filters.

In Figure 9.3,
e to select an Edge Filter, click the Edge Filter Drop Down List, which is the first List in the red
box;
e to select a Threshold Filter, click the Threshold Filter Drop Down List, which is the second
List;
e to select a Clean-Up Filter, click the Clean-Up Filter Drop Down List, which is the third List.

The Edge Filters attempt to exaggerate the main features a user is looking for.
The Threshold Filters attempt to suppress the background.

80

The Clean-Up Filters will smooth the resulting image to reduce recognition error.

The default setting in the ImageFinder is:

Edge Filter =2
Threshold Filter = 1
Clean-Up Filter =2

The code for the three Drop Down Lists is:

private void comboBox 1_SelectedIndexChanged(object sender, System.EventArgs e)

{
f.ip70.setEdgeFilter (comboBox1.SelectedIndex);

f.richTextBox1.AppendText ("Set EdgeFilter " +f.ip70.getEdgeFilter () + ".\n") ;
}

private void comboBox2_SelectedIndexChanged(object sender, System.EventArgs e)

{
f.ip70.setThresholdFilter (comboBox2.SelectedIndex);

f.richTextBox1.AppendText ("Set ThresholdFilter "
+comboBox2.SelectedIndex + "\n");

}

private void comboBox3_SelectedIndexChanged(object sender, System.EventArgs e)

{
f.ip70.setCleanUpFilter (comboBox3.SelectedIndex);

f.richTextBox1.AppendText ("Set CleanUpFilter "
+comboBox3.SelectedIndex + ".\n");

}
9.4 First Two Settings

The default setting should be:

Edge Filter = 2 or “Sobel 2”.
Threshold Filter =1 or “Dark Background 128.
Clean-Up Filter =2

Your second choice should be:
Edge Filter =0

Threshold Filter =5
Clean-Up Filter =2

9.5 Chapter Projects

81

ﬂglmage Preprocessing [=] il
Key | IC\traﬂsapp\et?ﬂ\ax_labe_mUUEgkUEUEULJpg

5ot EdgeFilter 2

Set ThreshaldFilter 1

Set CleanUpFilter 1
Dizplay Key Segment!
Cornplete Clean Up filter 1

Preprocessing Image Image Processing |

Figure 9.4 Chapter Project.

To see how image processing works, click the “Parameter” button in Figure 9.4 to get Figure 9.3. In
Figure 9.3, set the:

Edge Filter =2 or “Sobel 2”.
Threshold Filter =1 or “Dark Background 128”.
Clean-Up Filter =2

You should see the following message in the text window:

Set EdgeFilter 2.

Set ThresholdFilter 1.
Set CleanUpkFilter 1.
Display Key Segment!

Click the “Key” button and select image, “C:\transapplet70\ex_label\LLO1008gi-020501.jpg”. Click the
“Image Processing” button and Figure 9.4 will show the results of image processing.

82

10. Normalization

This chapter introduces a filter, Reduction Filter. From the user’s and programmer’s point of view, it
means the setting of several parameters. This filter, together with the Image PreProcessing Filter and
Image Processing Filters, will be passed to later layers as parameters.

If you are not interested in the details, you can skip this chapter.

The Normalization sub-layer will prepare the images for the underlying NeuralNet filters. The neural
net deployed in the ImageFinder, by default, is a 100x100 array of neurons. While any size of ABM
neural net can be used, when coming to a particular application, a decision has to be made. The
ImageFinder uses 6 different sizes:

e 10,000 neurons,
e &,100 neurons,

e 6,400 neurons,

e 4,900 neurons, or
e 2.500 neurons.

10.1 Class Library Name

The class library is:
Attrasoft. TransApplet70.ReductionFilter70.
The class in this library will be:
ReductionFilter70.
The interface, which will be used by ReductionFilter70, is:

public interface I_ReductionFilter70
{
string [] getReductionFilterNames();
int getReductionFilterDefaultIndex();

void setReductionFilter(int x);

int getReductionFilter();

bool getReductionFilterStatus();
int getNeuralNetWAndH ();

void setNeuralNetWAndH (int i);

void setSegmentCut(int x);
int getSegmentCut();

&3

void setSizeCut(int X);
int getSizeCut();

void setBorderCut(int x);
int getBorderCut();

void setLookAtX(int X);
int getLook AtX();

void setLookAtY (int Xx);
int getLookAtY();

void setLookAtXLength(int x);
int getLookAtXLength();

void setLookAtYLength(int x);
int getLookAtYLength();

string getMessage();

string getInfomation();
string toString();

void setlmage (Bitmap b);
int [] getPixels ();

int[] getArray ();

int getArrayWidth();
int getArrayHeight();

10.2 Class Library Overview

This class library will address a single filter in the Normalization layer, the Reduction Filter.
The Reduction Filter selections are:

string [] getReductionFilterNames();
int getReductionFilterDefaultIndex();

To set the Reduction Filter, use:
void setReductionFilter(int x);
int getReductionFilter();
bool getReductionFilterStatus();

To set the Reduction Filter parameters, use:

void setSegmentCut(int x);

84

int getSegmentCut();

void setSizeCut(int x);
int getSizeCut();

void setBorderCut(int x);
int getBorderCut();

void setLookAtX(int x);
int getLook AtX();

void setLookAtY (int X);
int getLookAtY();

void setLookAtXLength(int x);
int getLookAtXLength();

void setLookAtYLength(int x);
int getLookAtYLength();

string getMessage();
String getInfomation();
String toString();
To process an image via the Reduction Filter, specify the image via:
void setImage (Bitmap b);
To use the filter, call:
int[] getArray ();

int getArrayWidth();
int getArrayHeight();

10.3 Link to Class Library

To include the class library in the project,

e Right click References and select Add Reference in the Solution Explorer;
e Browse to find “ReductionFilter70.d1l” in “c:\transapplet70\”;
e Highlight it and click the “OK” button.

To use the class library, add:
using Attrasoft. TransApplet70.ReductionFilter70;

To declare an object, add:

&5

public Attrasoft.TransApplet70.ReductionFilter70.ReductionFilter70 rd70
=new Attrasoft. TransApplet70.ReductionFilter70.ReductionFilter70 ();

Now ReductionFilter70, rd70, is ready to use.

10.4 Parameters

The Reduction Filter parameters are:

Segment-Cut Button
Use the “Segment-Cut” button to shape the segment considered by the ImageFinder. The
Segment-Cut parameter ranges from 0 to 12. This parameter deals with the edges of segments
in the images. The larger this parameter is, the smaller the segment the ImageFinder will use.
The possible settings of this parameter in the user interface are: O, 1, 2, .., and 12.

Size-Cut Button
Use the "Size-Cut" button to limit the dimensions of images to be searched. In some
applications, the users only want to search images of certain dimensions and ignore other
images. The dimension setting ranges from 0 to 9.

e If the setting is 0, this parameter will be ignored.

e If the parameter is 1, then the longest edge of the image to be considered must be at
least 100, but less than 199.

e If the parameter is 2, then the longest edge of the image to be considered must be at
least 200, but less than 299, ...

Border Cut
Use the “Border-Cut” button to ignore the sections of the image near the borders. The Border-
Cut parameter ranges from 0 (no cut) to 9 (18% border cut). The possible settings in the user
interface are: 0, 1, 2, .., and 9. Assume an image is (0,0; 1,1); setting Border-Cut to 1 means the
ImageFinder will look at the section (0.02, 0.02; 0.98, 0.98); setting Border-Cut to 2 means
the ImageFinder will look at the section (0.04, 0.04; 0.96, 0.96);

Look-At Area
The “Look-At Area” is the area the ImageFinder will use. A 100x100 window specifies a

whole image. In the Integer-Reduction, the actual area can be less than 100x100. The Look-At
Area is specified by 4 numbers:

(X,y,w, h)

(x, y) are the coordinates of the upper-left corner and (w, h) are the width and height of the
Look-At Window.

86

11. Parameter Class

ImageFinder has many parameters. For the ImageFinder, the Image Matching is divided into:

Image Preprocessing

Image Processing
Normalization

Signatures

Feature Recognition

Image Segment Recognition

One or more filters further implements each step:

Image Preprocessing
Preprocessing Filter
Image Processing
Edge Filter
Threshold Filter
Clean-Up Filter
Normalization
Reduction Filter
Signature
Signature Filter
Feature Recognition
Unsupervised Filter
BioFilter
NeuralFilter
Image Segment Recognition
Neural Net Filter

The image-matching software design, based on the TransApplet, is implemented to push an image
through all of these filters. At the end of this pushing, the matching results will be obtained.

11.1 Pushing Images Through Filters

How to push an image through the following 10 filters:

Preprocessing Filter
Edge Filter
Threshold Filter
Clean-Up Filter
Reduction Filter
Signature Filter
Unsupervised Filter

ok L=

&7

8. BioFilter
9. NeuralFilter
10. Neural Net Filter

The implementation is as follows: the second filter will use the first filter as a parameter; the third filter
will use the first and second filters as parameters; ...

Each filter is an object (See their API in earlier chapters). Each filter will have many parameters and all
10 filters can have many parameters.

It will be easier, from the programming point of view, to group all of the objects together and to group
all of the parameters together.

e Section 11.2 will group all of the objects together; and
e Section 11.3 will group all of the parameters together.

11.2 Predefined Objects

You can either declare objects yourself or use the predefined objects in your project. There is one class
in the TransApplet:

Attrasoft. TransApplet70.EntryPoint70,

that has all of the objects required for the ImageFinder. In particular, the objects are:
public Attrasoft. TransApplet70.ImageSignature70.ImageSignature imageSignature;

public Attrasoft. TransApplet70.ImageSignature70.ImageSignature imageSignaturel;

public Attrasoft. TransApplet70.Results_I1N.Results_1N results_1N;

public Attrasoft. TransApplet70.Input70.Input70 input;

public Attrasoft. TransApplet70.Videolnput70.Videolnput70 aviVideo70
= new Attrasoft. Trans Applet70.Videolnput70.Videolnput70 ();

public Attrasoft. TransApplet70.ImageSignatureFilter70.ImageSignatureFilter signatureFilter;

public Attrasoft. TransApplet70.ImagePacket70.ImagePacket70 imagePacket ;

public Attrasoft. TransApplet70.TransAppletParameters. TransAppletParameters transAppletPara;

public Attrasoft. TransApplet70.ImagePreProcessing70.ImagePreProcessing70 imagePreProcessingFilter ;
public Attrasoft. TransApplet70.ImageProcessing70.ImageProcessing70 imageProcessingFilter ;

public Attrasoft. TransApplet70.ReductionFilter70.ReductionFilter70 reductionFilter ;

public Attrasoft. TransApplet70.UnsupervisedFilter70 .UnsupervisedFilter unsupervisedFilter;

public Attrasoft. TransApplet70.BioFilter70.BioFilter bioFilter;

public Attrasoft. TransApplet70.NeuralFilter70.NeuralFilter neuralFilter;

public Attrasoft. TransApplet70.ImageLibrary70.ImageLibrary imageLibrary;

public Attrasoft. TransApplet70.NeuralNet70.NeuralNet70 neuralNetFilter;

88

public Attrasoft. TransApplet70.Counting70 .Counting70 counting;

public Attrasoft. TransApplet70.OutputTracking70.OutputTracking70 ott70
= new Attrasoft. TransApplet70.OutputTracking70.OutputTracking70 ();
public Attrasoft. TransApplet70.TrackingAuto70 .TrackingAuto70 autoTracking;

public Attrasoft. TransApplet70.Analysis70.Analysis analysis;
public Attrasoft. TransApplet70.Batch70.Batch70 batch;

To use these objects, simply declare an object of the following class:

In the ¢

Attrasoft. TransApplet70.EntryPoint70.EntryPoint70 script;
onstructor, add:

script = new Attrasoft. TransApplet70.EntryPoint70.EntryPoint70 (richTextBox1);

Now, you can use all of the objects:

Objects Descriptions

Script. ImageSignature Image Signature

Script. signatureFilter Signature Filter

Script. bioFilter BioFilter

Script. unsupervisedFilter Unsupervised Filter

11.3 Grouping Parameters Together

The class that groups all parameters together is called TransAppletParameters. The class interface is:

public class TransAppletParameters

: TransAppletParametersData
{
public bool setPreProcessingFilterData
(Attrasoft. TransApplet70.ImagePreProcessing70.ImagePreProcessing70 ipre70);
public bool getPreProcessingFilterData
(Attrasoft. TransApplet70.ImagePreProcessing70.ImagePreProcessing70 ipre70);

public bool setimageProcessingFilterData
(Attrasoft. TransApplet70.ImageProcessing70.ImageProcessing70 ip70);
public bool getimageProcessingFilterData
(Attrasoft. TransApplet70.ImageProcessing70.ImageProcessing70 ip70);

public bool setReductionFilterData
(Attrasoft. TransApplet70.ReductionFilter70 .ReductionFilter70 rd70);
public bool getReductionFilterData
(Attrasoft. TransApplet70.ReductionFilter70 .ReductionFilter70 rd70);

public bool setSignatureFilterData

&9

(Attrasoft. TransApplet70.ImageSignatureFilter70.ImageSignatureFilter sig70);
public bool getSignatureFilterData
(Attrasoft. TransApplet70.ImageSignatureFilter70.ImageSignatureFilter sig70);

public bool setUnsupervisedFilterData
(Attrasoft. TransApplet70.UnsupervisedFilter70 .UnsupervisedFilter usf70);
public bool getUnsupervisedFilterData
(Attrasoft. TransApplet70.UnsupervisedFilter70 .UnsupervisedFilter usf70);

public bool setBioFilterData

(Attrasoft.TransApplet70.BioFilter70.BioFilter bf70);
public bool getBioFilterData

(Attrasoft. TransApplet70.BioFilter70 .BioFilter bf70);

public bool setNeuralFilterData

(Attrasoft. TransApplet70.NeuralFilter70.NeuralFilter nf70);
public bool getNeuralFilterData

(Attrasoft. TransApplet70.NeuralFilter70 .NeuralFilter nf70);

public bool setNeuralNetData

(Attrasoft. TransApplet70.NeuralNet70 .NeuralNet70 nn70);
public bool getNeuralNetData

(Attrasoft. TransApplet70.NeuralNet70 .NeuralNet70 nn70);

}

Before we explain the functions, let us first see the base class, which contains all of the parameters:

public class TransAppletParametersData
{

//[TmageFinder 7.0]

public int executionCode =0;

//[Input]

public string keylmage_absolutePath="None";
public string keylmage_segmentX="0";

public string keylmage_segmentY="0";

public string keyImage_segmentXlength="0";
public string keylmage_segmentYLength="0";
public string searchSource_Name="None";
public string searchSource_Type = "0";

public string searchSource_sqlStatement ="NA";

//[Image PreProcessing Filters]

public int imagePreProcessing_BorderCut =0;
public int imagePreProcessing_MaskX =0;
public int imagePreProcessing_MaskY =0;
public int imagePreProcessing_ MaskW =0;
public int imagePreProcessing_MaskH = 0;

90

public int imagePreProcessing_MaskType = 0;

public int imagePreProcessing_StickShift = 0;

public int imagePreProcessing_SkipEmptyBorderType =0;
public int imagePreProcessing_SkipPercent =0;

public int imagePreProcessing_SkipEdgeFilter = 0;

public int imagePreProcessing_SkipThresholdFilter = 0;

//[Image Processing Filters]

public int imageProcessing_edgeFilter=2;

public int imageProcessing_thresholdFilter=1;
public int imageProcessing_cleanUpFilter=2;
public int imageProcessing_doubleProcessing=0;

public int imageProcessing_R1=0;
public int imageProcessing_R2=128;
public int imageProcessing_R3=2;
public int imageProcessing_G1=0;
public int imageProcessing_(G2=128;
public int imageProcessing_G3=2;
public int imageProcessing_B1=0;
public int imageProcessing_B2=128;
public int imageProcessing_B3=2;

//[Reduction Filter]

public int reduction_Filter=0;

public int reduction_SegmentCut=0;
public int reduction_SizeCut=0;

public int reduction_BorderCut=0;
public int reduction_LookAtX=0;

public int reduction_LookAtY=0;

public int reduction_LookAtXLength=0;
public int reduction_LookAtYLength=0;

//[SignatureFilter]
public int signatureFilter=0;

//[UnsupervisedFilter]

public int UnsupervisedFilterFilter=0;

public int UnsupervisedFilter_Percent=20;

public int UnsupervisedFilter_Mode=0;

public int UnsupervisedFilter_CutOff=0;

public int UnsupervisedFilter_OutputFileType=0;

public int UnsupervisedFilter_ShowFile=1;

public int UnsupervisedFilter_Blurring=2;

public int UnsupervisedFilter_Sensitivity=4;

public int UnsupervisedFilter_UseRelativeScore=0;
public int UnsupervisedFilter_ShowScore =1 ;

public int UnsupervisedFilter_AutoSegment=0;

//[BioFilter]

public int bioFilter=0;

public int bioFilter_Percent=20;

public int bioFilter_Mode=0;

public int bioFilter_CutOff=0;

public int bioFilter_OutputFileType=0;

public int bioFilter_ShowFile=1;

public int bioFilter_Blurring=2;

public int bioFilter_Sensitivity=4;

public int bioFilter_UseRelativeScore=0;
public int bioFilter_ShowScore =1 ;

public int bioFilter_AutoSegment=0;

//[NeuralFilter]

public int neuralFilter=2;

public int neuralFilter_Percent=20;
public int neuralFilter_Mode=0;
public int neuralFilter_Size=2;
public int neuralFilter_CutOff=0;

public int neuralFilter_OutputFileType=0;
public int neuralFilter_ShowFile=1;

public int neuralFilter_Blurring=2;

public int neuralFilter_Sensitivity=4;

public int neuralFilter_UseRelativeScore=0;

public int neuralFilter_ShowScore =1 ;
public int neuralFilter_AutoSegment=0;

//[Neural Net]

public int neuralNetFilter=0;

public int neuralNetFilter_symmetry=3;
public int neuralNetFilter_rotationType=0;
public int neuralNetFilter_translationType=0;
public int neuralNetFilter_scalingType=0;

public int neuralNetFilter_sensitivity=50;

public int neuralNetFilter_blurring=10;

public int neuralNetFilter_internal WeightCut=100;
public int neuralNetFilter_external WeightCut=0;
public int neuralNetFilter_segmentSize=0;

public int neuralNetFilter_imageType=1;
public int neuralNetFilter_fileDisplayType=0;

public int neuralNetFilter_autoSegment=0;
public int neuralNetFilter_neuralNetMode=0;

}

The base class holds all parameters for the TransApplet. The main class, TransAppletParameters, has
8 pairs of functions like this:

public bool setPreProcessingFilterData
(Attrasoft. TransApplet70.ImagePreProcessing70.ImagePreProcessing70 ipre70);

public bool getPreProcessingFilterData
(Attrasoft. TransApplet70.ImagePreProcessing70.ImagePreProcessing70 ipre70);

The first function, setPreProcessingFilterData, passes the parameters in the TransAppletParameters
object to a filter.

The second function, getPreProcessingFilterData, gets all of the parameters in a filter and stores them
into the current TransAppletParameters object.

In this way, we get and set all of the parameters of a filter together. We also treat all of the filters
exactly the same way.

11.4 Chapter Project

The chapter project is located at c:\transapplet70\imagefinder\.

Starting from this chapter, we will start to build software like the ImageFinder.

This section will focus on the forms used in the project and the parameters. The main form will not
implement any functions; rather, it will link to functions in other classes. The functions will be
implemented in two classes:

e MainMenuToAPI
e GUIRelated

Class, MainMenuToAPI, will implement all TransApplet related functions. This class will declare
an object of “Attrasoft. TransApplet70.EntryPoint70.EntryPoint70”, which contains all of the required
objects.

Class, GUIRelated, will implement all functions related to GUI (Graphical User Interface), such as
input/output, display images, messaging, ...

The form, Parameters, will handle all of the parameters used in the TransApplet. It also links to

many other forms used to specify the parameter. Each of these forms specifies parameters for one
filter.

93

11.5 Creating Forms

=10l x|

Change Flay/Stop
Bode Live

e [S Y S) Y

Source 1; H Result 1:1 Batch

Figure 11.1 The main form.

The project will have the following forms and classes. You can either start your own ImageFinder
project to build these forms and classes, or use the project located at “c:\transapplet70\imagefinder\”.

If you start your own project, please create the following forms and classes:

MainMenu Form
Rename Form1 to Mainmenu. This will be the main form. The main form will not implement
any functions. Its sole purpose is to link the buttons and menu items in the main form to
functions in other classes. This form looks like Figure 11.1.

GUIRelated Class
Create a class, GUIRelated, to implement all functions related to GUI (Graphical User
Interface), such as input/output, display images, messaging, ...

MainMenuToAPI Class
Create a class, MainMenuToAPI, to implement all TransApplet related functions. This class
will declare an object of “Attrasoft. TransApplet70.EntryPoint70.EntryPoint70”, which contains
all of the required objects.

94

(™ parameters

Image Preprocessing | IPP Parameters

Image Processing |2 Sohel 2

IT Dark Background 128

L L Ll e)|

[2. edium
Normalization IReducﬂon Filter: Int, Awvg
Signature IS\gnatureFMlerU

Unsupervised Filer USF Parameters

BioFilter BF Parameters |
NeuralFilter [MeuralFitter 100 Meurans (Small) =]
MNeural Net INeuraI MNet 100x100 LI

=10l %]

IP Parameters

M Parameters

NF Parameters
NT Parameters

SetEdgeFilter 2

Set ThresholdFilter 1.

SetCleanUpFilter 2

Set Redeuction Filter 0: Reduction Filter: Int. Awvg
Set SignatureFilter 0. SignatureFilter 0

SetMNeural Filter 2: NeuralFilter 100 Meurons (Small)
SetMeuralNet Filter 0: Neural Net 100x100

0K |

Figure 11.2 The Parameters form.

Border Cut i} (0% - 50%)

Mask(uywh.vpe [T [o o [o]
Mask Type, 0: ignore; 1: pixel value; 2 percentage value

Stick Shift |.]7 (0-5)

Skip Empty Border: lui

D{Nothing); 1{Light Background); 2(Dark Background); 3(Light
percent); 4(Dark Percent); 5{Threshold Filter); 6 (Threshold
Filter Percent)

Skip Percent i}
Skip Threshold Fiter |5 Edge fi}

OK Cancel

Y.

Figure 11.3 Image Preprocessing Parameter Form.

ﬂg hreshold Filter Parameter -0 il

Calor [0, 254] [1. 255] [0.2]
e Jo [128 B
Grean [o [128 [
Blue [o [128 [

0: Light Background . 1: Dark Backgraund, 2: Ignore this color
4

Figure 11.4 Image Processing Parameter Form.

95

Reduction Filter Parameter

Figure 11.5 Normalization Parameter Form.

B Unsupervised Filter Parameter

b

p

I
o

Figure 11.6 Unsupervised Filter Parameter Form.

B NeuralFilter Parameter

Figure 11.7 Neural Filter Parameter Form.

96

(1™ neural Net Parameter _lo]x]|

Syrmetry IE— Blurring (0,50) lm—

Translate Type I[l— Sensitivity (0,100) |5|]—
Scaling Type ID— Internal Cut (0,100) 100

Rotation Type ID— External Cut IU—

key (e y. w h) ID— Segment Size l[l—

IU— Image Type l1—

IEI— Auto Segment l[l—

ID— Use BioFilter IU—

Use NeuralFilter IU—

OK Cancel

Figure 11.8 NeuralNet Filter Parameter Form.

Parameter Form
Implements all of the TransApplet parameters. This form will link to many other forms used
to specify parameters. Each of these forms specifies parameters for one filter. Figure 11.2
shows the form.

Image Preprocessing Parameter Form
Implements all of the Image Preprocessing parameters. Figure 11.3 shows the form.

Image Processing Parameter Form
Implements all of the Image Processing parameters. Figure 11.4 shows the form.

Normalization Parameter Form
Implements all of the Normalization parameters. Figure 11.5 shows the form.

Unsupervised Filter Parameter Form
Implements all of the Unsupervised Filter parameters. Figure 11.6 shows the form.

BioFilter Parameter Form
Implements all of the BioFilter parameters. The BioFilter Parameter Form looks like the
Unsupervised Filter parameters form in Figure 11.6.

NeuralFilter Parameter Form
Implements all of the NeuralFilter parameters. Figure 11.7 shows the form.

NeuralNet Filter Parameter Form
Implements all of the NeuralNet Filter parameters. Figure 11.8 shows the form.

11.6 TransApplet Objects

The first thing we will do is to create all of the objects required for the ImageFinder. As we discussed
earlier in this chapter, all of the objects required for the ImageFinder project is grouped into a single
class. All we have to do is to create an object of this class and we will call it script. We will create this
object in class, MainMenuToAPI. The object is called script.

97

internal Attrasoft.TransApplet70.EntryPoint70.EntryPoint70 script;
MainMenu f;

public MainMenuToAPI(MainMenu f1)
{

try

{

f="fl;

script = new Attrasoft. TransApplet70.EntryPoint70.EntryPoint70
(f.richTextBox1);

}

catch (Exception e)

{
}

f.richTextBox1.Text = e.ToString () +"\n";

11.7 Selecting Filters

The “Parameter” button in Figure 11.1 opens the Parameter Form in Figure 11.2, as follows:

private void button10_Click(object sender, System.EventArgs e)

{

Parameters paForm = new Parameters (this.mainMenuToAPI .script);
paForm.ShowDialog ();

}

Once in the Parameter Form in Figure 11.2, you can set the filters directly. To set the filter parameters,
you have to open the following additional forms:

Image Preprocessing Parameters Form
Image Processing Parameters Form
Normalization Parameters Form
Unsupervised Filter Parameters Form
BioFilter Parameters Form
NeuralFilter Parameters Form
NeuralNet Filter Parameters Form

There are two parts related to the parameters:

e Selecting Filters
e Setting Filter Parameters

Selecting filters are done in the Parameter Form in Figure 11.2.

Setting filter parameters requires opening another form in Figure 11.3 — 11.8 and it is in these forms
that the filter parameters are set.

98

We now discuss how to set each filter:

Image Preprocessing Filter
There is only one Image Preprocessing Filter, so you do not have to set this filter.

Image Processing Filters
There are three image processing filters: Edge Filters, Threshold Filters, and Clean-Up Filters.
You can select these filters from the Drop Down Lists in Figure 11.2.

The Edge Filter is implemented as follows:

void comboBox1_SelectedIndexChanged(object sender, System.EventArgs e)
{
script.transAppletPara.imageProcessing_edgeFilter =
comboBox1.SelectedIndex;
script.transAppletPara.setlImageProcessingFilterData
(script.imageProcessingFilter);
richTextBox1.AppendText ("Set EdgeFilter "
+script.transAppletPara.imageProcessing_edgeFilter + ".\n") ;

}

The first line gets the new setting from the Combo Box (Drop Down List).
The second line assigns the new data to the Image Processing filter object.
The third line prints a message.

The Threshold Filter and the Clean-Up Filter are handled in a similar fashion.

Normalization Filter
You can select the Normalization filters from the Drop Down List in Figure 11.2. The
Normalization Filter is implemented as follows:

void comboBox4_SelectedIndexChanged(object sender, System.EventArgs e)
{

script.transAppletPara.reduction_Filter
= comboBox4.SelectedIndex ;

script.transAppletPara.setReductionFilterData
(script.reductionFilter);

richTextBox1.AppendText ("Set Redeuction Filter "
+comboBox4.SelectedIndex + ": " + comboBox4.SelectedItem + "\n");

}

The Unsupervised Filter selection, BioFilter selection, NeuralFilter selection, and NeuralNet Filter
selection will be implemented in a similar fashion.

99

11.8 Set Filter Parameters

In the last section, we have shown that you can select a filter in the Parameter Form shown in Figure
11.2. After selecting a filter, to set the filter parameters, you have to open the following additional
forms and specify the parameter:

Image Preprocessing Parameter Form
Image Processing Parameter Form
Normalization Parameter Form
Unsupervised Filter Parameter Form
BioFilter Parameter Form
NeuralFilter Parameter Form
NeuralNet Filter Parameter Form

We will use the Image Preprocessing Parameter Form in Figure 11.3 to show the implementation. The
“OK” button in Figure 11.3 is implemented as follows:

private void button1_Click(object sender, System.EventArgs e)

{

try

{

script.transAppletPara.imagePreProcessing_MaskX = int.Parse (textBox1.Text) ;
script.transAppletPara.imagePreProcessing_ MaskY = int.Parse (textBox2.Text) ;
script.transAppletPara.imagePreProcessing_MaskW = int.Parse (textBox3.Text) ;
script.transAppletPara.imagePreProcessing_ MaskH = int.Parse (textBox4.Text) ;
script.transAppletPara.imagePreProcessing_MaskType

= int.Parse (textBox11.Text);

script.transAppletPara.imagePreProcessing_BorderCut
= int.Parse (textBox5.Text) ;

script.transAppletPara.imagePreProcessing_StickShift
= int.Parse (textBox6.Text));

script.transAppletPara.imagePreProcessing_SkipEmptyBorderType
= int.Parse (textBox7.Text) ;
script.transAppletPara.imagePreProcessing_SkipPercent

= int.Parse (textBox8.Text) ;
script.transAppletPara.imagePreProcessing_SkipThresholdFilter

= int.Parse (textBox9.Text) ;
script.transAppletPara.imagePreProcessing_SkipEdgeFilter

= int.Parse (textBox10.Text) ;

script.transAppletPara.setPreProcessingFilterData
(script.imagePreProcessingFilter);

this.Close();

100

}

catch

{

MessageBox.Show ("Please enter valid integers", "Entry Error");

}
}

The first section takes the input data from the text boxes and stores them in object,
script.transAppletPara.

The second section,
script.transAppletPara.setPreProcessingFilterData (script.imagePreProcessingFilter);

passes the data in object, “script.transAppletPara”, to the Image Preprocessing filter,
script.imagePreProcessingFilter.
In a similar fashion, we can implement the following parameter forms:
Image Processing Parameter Form
Normalization Parameter Form
Unsupervised Filter Parameter Form
BioFilter Parameter Form

NeuralFilter Parameter Form
NeuralNet Filter Parameter Form

101

12. Image Signatures

Image Matching is done through something called Image Signature. An image has a set of computed
values called features. A collection of features is grouped into a signature.

In this project, we will use Signature Menu Items to compute. The input is an image and the output is a
signature. We will show how to use the Image Signatures in image matching in the next chapter. This
chapter introduces how to compute signatures only, which will take an input image and produce a
signature.

12.1 Signature Menu

First of all, we will create the menu shown in Figure 12.1 and create the menu items under the
Signature Menu.

Attrasoft ImageFinder 7.0, http://attrasoft.com | sl il
Signature Unsupervised BioFilter MeuraFiter Library MeuralNet Counting Batch Examples Help
Trairing Signature (t1.txt)
0 select a key image! Chance Plav/Ston
Left Signature (Key)
Right: Signature ect an input type, then Source to select a source Mode Live
I Signature (al.txt)
M2 Signatiire (a2.txt)
M3 Signature (a3.txt) Ready!
14 Signatiire (a4.txt) Click the Mode button
to select an input type:
Copy al.tz<t to tltxt Directory,
File.
el LIt to altxt 5 ’
Y ° @ On! Sub-Directory,
What is This ? File Segment,
ue Access,

Access Segment,
*.avi file, and

The key will be Live Video.
i | Click § b
displayed here! i e P

Source 1: ¥ Result 1: 1 Match

| o | [| | | B EE EE B
xywrh |n o o |n

Status

Figure 12.1 Signature Menu.

12.2 API

The basic idea is:
Image Signature = SignatureFilter. getSiganture (image);

As we can see, there are two objects here, Signature and Signature Filter. The Signature functions are:

102

Function

Descriptions

Comments

int getStatus ()

Returns the status
associated with the
signature.

Output:

1: signature ready.

0: signature not ready.
-1: no image

-2: image segmentation
specification error

-3: other error.

string getID()

Returns the ID associated
with the signature.
Output: image ID.

string getlmageName ()

Returns the image name
associated with the
signature.

Output: image name.

string getlmagePath()

Returns the image path
associated with the
signature.

Output: image path.

string getAbsolutePath ()

Returns the absolute path
associated with the
signature.

Output: image absolute
path.

int getNumberOfAttributes
0

Returns the number of
attributes associated with
the signature.

Output: number of
attributes.

int []
getSignatureAttributes()

Returns the attribute array
associated with the
signature.

Output: attribute array.

int int []
getSignatureAttributes()
(int index)

Returns the attribute
associated with the input
index.

Input: index.

Output: attribute
associated with the input
index.

string toString ()

Returns the entire image
signature as a string with

103

\ fields separated by Tab.

The Signature Filter functions are:

Function

Descriptions

Comments

bool setSignatureFilter (int

X)

int getSignatureFilter ()

Selects a Signature filter.

string [] Gets a list of Signature
getSignatureFilterNames(); | filter names.
ImageSignature Gets the Signature of the

getSignature (string
imagePath, string ID);

ImageSignature
getSignature (string
imagePath);

ImageSignature
getSignature (Bitmap b,
string ID);

input image.

ImageSignature
getSignature (Bitmap b);
ImageSignature Gets the Signature of the
getSignature input image segment.
(string imagePath, string
ID,int x, int y, int w, int h); | Input:

string imagePath, or
ImageSignature Bitmap bImg
getSignature string ID

(Bitmap bImg, string path,
string name, string ID,
int X, int y, int w, int h);

int x, int y, int w, int h.
Output:
Signature.

bool getLibrary
('string []
imageAbsolutePath,
string fileName);

bool getLibrary
('string []
imageAbsolutePath,
string [] IDs,

string fileName);

Generates a Signature
library from all images in
string []
imageAbsolutePath and
produces a file that
contains all signatures.

Input:
string []

imageAbsolutePath

104

bool getSegmentLibrary (
string []

Output:
A text file that contains
the library of signatures.

imageAbsolutePath,
string [] IDs,

string [] xs,

string [] ys,

string [] ws,

string [] hs,

string fileName);

bool getSegmentLibrary (
string []
imageAbsolutePath,
string [] IDs,

int [] xs,

int [] ys,

int [] ws,

int [] hs,

string fileName);

12.3 TransApplet Objects

The first thing we will do is to create all of the objects required for the ImageFinder. As we discussed
earlier in this chapter, all of the objects required for the ImageFinder project is grouped into a single
class. All we have to do is to create an object of this class and we will call it script. We will create this
object in class, MainMenuToAPL

internal Attrasoft. TransApplet70.EntryPoint70.EntryPoint70 script;
MainMenu f;

public MainMenuToAPI(MainMenu f1)
{
try
{
f=11;
script = new Attrasoft. TransApplet70.EntryPoint70.EntryPoint70
(f.richTextBox1);
}

catch (Exception e)

{

}
}

f.richTextBox1.Text = e.ToString () +"\n";

105

12.4 Key Signature

You can collect the signature(s) of the left image, the right image, and all of the images in a folder. To
compute the signature of an image:

e C(Click the “Key” button to select a key image or sample image;
e C(Click the “Signature/Left Signature (Key)” to compute the signature.

Example. Left Signature.

To continue from Figure 3.4, click the “Clear” button to clear the text box. Click “Signature/Left
Signature (Key)” and you will see Figure 12.2.

Attrasoft ImageFinder 7.0, http://attrasoft.com =10 il
Signature Unsupervised BioFilter MeuralFiter Library MeuralMet Counfing Batch Examples Help
Kew |C\ngram Files\attrasoftimageFinder 7.0vex_wheeh20B7(1).jog Chance Flav/Ston
Source I |C\ngram Filag\AtirasoftimageFinder 7.0vex_wheel Ilode Live

Miatching | Halp | Tmags Procsssing |

The Signature for the left picture bo
1537 26 23 26

st gt s P | T e e e

Source 1: ¥ Result 1: 1 Match

Signature Filter: Create and display 1! signature (key signature) for 1:N Matching,

Figure 12.2 Click “Signature/Left Signature (Key)”.
The Signature looks like:
1591 26 23 26 23
Similarly, click “Signature/Right Signature” and you will get an image signature for the right image.
In 1:1 Matching or 1:N Matching, the signatures are computed behind the screen; you do not need to
use the signature directly. The menu item “Signature/Left Signature (Key)” shows you the mechanism
behind the screen so you can see what a signature looks like.
Now we implement these two menu items. Double click these menu items and enter:
private void menultem?2_Click(object sender, System.EventArgs e)

{
this.mainMenuToAPILsignature_Key_Signature (textBox1.Text);

}

106

Here, mainMenuToAPI is an object, which will implement all functions. As we discussed in the last
chapter, the main form simply links menu items to functions in the mainMenuToAPI object. The
implementation is:

public bool signature_Key_Signature (string key)

{

if (! System.IO .File .Exists (key))

{
appendText ("Please enter a valid Key!\n");
return false;

}

intx=0,y=0,w=0,h=0;

try

{
x = int.Parse (f.textBox3.Text);
y = int.Parse (f.textBox4.Text);
w = int.Parse (f.textBox5.Text);
h = int.Parse (f.textBox6.Text);

}

catch

{
setText ("Invalid integers!\n");
x=0;
y=0;
w =0;
h=0;
return false;

}

script.ImageSignature
= script.signatureFilter.getSignature (key, "1 of 1:N", x, y, w, h);

if (script.imageSignature !=null)

{
setLine ("The Signature for the left picture box:");
appendLine (script.imageSignature.toString ());
return true;
}
else
return false;
}

The following section of code simply makes sure the key image exists:

if (! System.1O .File .Exists (key))

{
appendText ("Please enter a valid Key!\n");

107

return false;

}

The following section of code computes (X, y, w, h) of the key segment:

intx=0,y=0,w=0,h=0;

try
{
x = int.Parse (f.textBox3.Text);
y = int.Parse (f.textBox4.Text);
w = int.Parse (f.textBox5.Text);
h = int.Parse (f.textBox6.Text);
}
catch
{
setText ("Invalid integers!\n");
x=0;
y=0;
w =0;
h=0;
return false;
}

The following section of code computes the signature of the key segment:

script.ImageSignature
= script.signatureFilter.getSignature (key, "1 of 1:N", x, y, w, h);

In this statement, the script object contains all of the objects required for the ImageFinder project. In
particular, “script.ImageSignature” is the image signature object; and script.signatureFilter is the
signature filter object. The parameter, "1 of 1:N", is the ID, which we arbitrarily assigned to the key
image. The following section of code prints the signature of the key segment in the text window:

if (script.imageSignature != null)

{
setLine ("The Signature for the left picture box:");
appendLine (script.imageSignature.toString ());
return true;

}

The menu item, “Signature/Right Signature”, is implemented in a similar fashion.

12.5 Signature File Concepts

Signatures files are divided into three groups: Training Signature File, N-Signature File, and M-
Signature File. In a 1:N Match, the 1-signature is computed at run time and the N-signature is
computed in advance.

108

Training teaches the ImageFinder who should match with whom. Training is done through two files, a
training signature file with a fixed name “\data\tl.txt” and a match file with a fixed name
“\data\match.txt”. Here, “.\” is the folder where the executable files stay. Menu item,
“Signature/Training Signature (tl.txt)”, generates training signatures from a specified directory of
images.

In 1:N Matching, the Key image will be matched against all images in a directory. The key signature is
computed first, as we demonstrated in the last section. Then this signature will be matched against all
signatures in the N-signature file. The N-signature file has a fixed name, “.\data\al.txt”.

In N:M Matching, the N-signature file, al.txt, and the M-signature file, a2.txt, a3.txt, al2.txt, are
computed first. Then all of the signatures in al.txt will be matched against all of the signatures in
a2.txt. The three M-signature files have fixed names, ‘“\data\a2.txt”, “\data\a3.txt”, and
“\data\al2.txt”.
There are 5 menu items:

Signature/Training Signature (t1.txt)

Signature/N Signature (al.txt)

Signature/M2 Signature (a2.txt)

Signature/M3 Signature (a3.txt)

Signature/M4 Signature (al2.txt)

These commands compute the signatures for all images in a directory. The only difference is where to
save the signatures.

Menu item, Signature/Training Signature (t1.txt), computes the signatures for all images in a directory
and saves the signatures to tl.txt, the training signature file.

Menu item, Signature/N Signature (al.txt), computes the signatures for all images in a directory and
saves the signatures to al.txt, the N-signature file.

Menu item, Signature/M2 Signature (a2.txt), computes the signatures for all images in a directory and
saves the signatures to a2.txt, the M-signature file.

Menu item, Signature/M3 Signature (a3.txt), computes the signatures for all images in a directory and
saves the signatures to a3.txt, the M-signature file.

Menu item, Signature/M4 Signature (al2.txt), computes the signatures for all images in a directory and
saves the signatures to al2.txt, the M-signature file.

12.6 Signature File Implementation

Now we implement menu item, Signature/N Signature (al.txt). Double click this menu item and enter:

private void menultem6_Click(object sender, System.EventArgs e)

109

{

this.mainMenuToAPI.signature_Training_Segment_Signature
(dataDir + "al.txt");

}

Again, mainMenuToAPI is an object, which will implement all functions. As we discussed in the last
chapter, the main form simply links menu items to functions in the mainMenuToAPI object. The
implementation is:

public void signature_Training_Segment_Signature (string outputFile)
{
f.mainMenuToAPL.script.signatureFilter.getSegmentLibrary
(f.gui.imageAbsoultePath,
f.gui.imagelD ,
f.gui.imageX,
f.gui.imageY,
f.gui.imageW,
f.gui.imageH ,
outputFile);
}

In this statement, the script object contains all of the objects required for the ImageFinder project. In
particular, “script.signatureFilter” is the image signature filter object. The parameters,
“f.gui.imageAbsoultePath”, is a string list that has the absolute paths of all source images to be
matched. After the completion of signature computation, the results will be stored in a file specified by
the last parameter, outputFile.

The only difference between the following menu items is the output file; therefore, all of them will be
implemented in a similar fashion:

Signature/Training Signature (t1.txt)
Signature/N Signature (al.txt)
Signature/M2 Signature (a2.txt)

Signature/M3 Signature (a3.txt)
Signature/M4 Signature (al2.txt)

12.7 Examples

To compute the N-signatures:

e C(Click the “Source” button to select a directory;
e Click “Signature/N Signature (al.txt)” to compute the signatures in al.txt.

Example. Select N-images:

e Click the “Source” button;

110

e Select image, “./ex_wheel/2067(1).jpg”, here “./” means the folder where the ImageFinder is

located. The default location for our project will be:
“c:\transapplet70\imagefinder\bin\Release\”.
re. “.\” = “c:\transapplet70\imagefinder\bin\Release\”.
e Click “Signature/N Signature (al.txt)”;
e Open “./data/al.txt” to see the results.

You can repeat the above example for the following menu items:

Signature/Training Signature (t1.txt)
Signature/M2 Signature (a2.txt)
Signature/M3 Signature (a3.txt)
Signature/M4 Signature (al2.txt)

And the results will go to tl.txt, a2.txt, a3.txt and al2.txt, respectively.

111

13. Unsupervised Filters

ﬂgAttrasoft ImageFinder 7.0, http://attrasoft.com ;lglil

Signature | Unsupervised BioFilter MeuralFilter Library MeuralMet Counfing Batch Examples Help
Matching r 1:1 (Left vs Right)

Keny MM Analysis * elh2067(1).jng Change | Plav/Stop
LM (key vs al.txt)
Source Results 5 | Maode Live
What is This 7 MM (altet vs altxt)
Matching | Help | Imsge Processing M:MZ (@14t vs aZ.txt)

(The Signature for the left picture bo
1581 26 23 26

' m)
g
T o) ‘//

. -
Fitered | Ovigind | Segment | Parameterl. cex | F| =] 2| ®| =] <] u| B] x|

Source 1: ¥ Result 1: 1 Match

o b b F b

Signature Filter: Create and display '1' signature (key signature) for 1:M Matching,

Figure 13.1 Unsupervised Filter.

This chapter will demonstrate how the Unsupervised Filter works using a Label Matching example.
The project is located at:

c:\transapplet70\imagefinder\.
The executable file is located at:
c:\transapplet70\imagefinder\bin\Release\.
We also call this folder “.\”. That is, “.\” is “c:\transapplet70\imagefinder\bin\Release\”. The data is

located at: “.\ex_label” or “c:\transapplet70\imagefinder\bin\Release\ ex_label”.

13.1 Unsupervised Filter Menu

GIANT Nutrition Fmie S e 3w

EAGLE . Facts Total Fat 0g 0% Total Carb. 2 9%

; b JELLIED S, Sz lhcp(lg) Sal Faltg 0% Feerly A
Sening bl Tpolegt [
Cranberry by Mam wem

| Sauce ,;EE‘EWELW! Sodium 35mg 1% Protein g

Djee
sasedena2(ocaedet. Vitanmin A 0% © Vitamin C 0% © Calcium 0% ® Iron 0%

w INGREDIENTS: CRANBERRIES, HiGH FRUCTOSE CORN AFTER OPENING, STORE [N A GLASS 0R
SYRUP, WATER, CORN SYRUP AND CITRIC AGID. PLASTIC CONTAINER ANO REFRIGERATE.

DISTRIBUTED BY UALITS
(GIANT EAGLE, INC., PITTSBURGH, PA 152382800 B0, St
51993 GIANT EAGLE INC. Cane 10
QUESTIONS? COMMENTS? 1-800-553-2324
VISIT OUR WEB'

O erwrsoz S

CLEMENT PAPPAS

Figure 13.2 Newly Captured Image.

First of all, we will create the menu and menu items shown in Figure 13.1.

112

The data used is shown in Figure 13.2. The matching problem is: assuming we have a newly captured
image in Figure 13.2, let us match it against the existing master library and see if there is a match.
There are 304 images in 152 pairs. The data is stored at “.\ex_label\” folder.

13.2 Unsupervised Filter API

The following table lists the functions.

Functions Descriptions
Attrasoft. TransApplet70.Results_IN .Results_1N Makes a 1:1
findMatchl11 matching

(Attrasoft. TransApplet70.ImageSignature70.ImageSignature sigl,
Attrasoft. TransApplet70.ImageSignature70.ImageSignature sig2);

Attrasoft. TransApplet70.Results_IN .Results_1N findMatch11
(string pathl, string path2);

Attrasoft. TransApplet70.Results_IN .Results_1N findMatch11
(Bitmap left, Bitmap right);

Attrasoft. TransApplet70.Results_1N.Results_1N findMatch1N Makes a 1:N
(Attrasoft. TransApplet70.ImageSignature70.ImageSignature sig, matching
string alFile, string b1File);

Attrasoft. TransApplet70.Results_1N.Results_1N findMatch1N
(string keyuPath, string alFile, string b1File)

Attrasoft. TransApplet70.Results_1N.Results_1N findMatch1N
(Bitmap keyImage, string alFile, string b1File)

bool findMatchNN (string alFile, string b1File); Matches all image
bool findMatchNM (string alFile, string a2File, string b1File); signatures in file
alFile against all
image signatures in
alFile or a2File
and saves the
results to blFile.

13.3 N-Signature

An Unsupervised Matching process has three steps:

e Signature;
e Matching;
e Results and Analysis.

113

To get the N-signature file, al.txt:

e C(Click the “Source” button, go to the “.\ex_label” directory and select any file in the folder. This
will specify the input directory.

e C(Click the Source “>” button a few times to see the images;

e C(Click menu item “Signature/N Signature (al.txt)” to get the signatures in al.txt file.

13.4 N:N Matching Design

Continuing from the last section, we will do N:N Matching first:

e C(Click menu item “Unsupervised/Matching/N:N (al.txt vs. al.txt)” button to complete a N:N
Match.

The results are in a file, bl.txt, which will be opened at this time. The name, bl.txt, is fixed. The file
looks like this:

C:\...\L01008gi-020501.jpg
C:\...\L01008gi-020501.jpg

110

C:\...\L01008gi_r90.jpg

95
C:\...\L02016alb-090100_m.jpg
65

C:\...\L01008gi_r90.jpg
C:\...\L01008gi-020501.jpg
95

C:\...\L01008gi_r90.jpg
110

The result file contains many blocks. The number of blocks is the same as the number of images in the
search directory, i.e. each image has a block. Line 1 in each block is the input and the rest of the lines
are output; i.e. the first line is the image matched against all images in the search directory; the rest of
the lines represent the matched images. For example, “C:\...\L01008gi_r90.jpg” is matched against all
304 images in the search directory; there are three matches.

The first match is:

C:\...\L01008gi-020501.jpg
110

Here “110” is a score.

The second match is:

114

C:\...\L01008gi_r90.jpg
95

and the third match is:

C:\...\L02016alb-090100_m.jpg
65

Higher scores indicate a closer match.

13.5 N:N Matching Implementation

Double click menu item “Unsupervised/Matching/N:N (al.txt vs. al.txt)” and enter:

private void menultem23_Click(object sender, System.EventArgs e)

{
this.mainMenuToAPI .unsupervised_Matching_NToM

(dataDir + "al.txt", dataDir + "al.txt", dataDir + "bl.txt");

}

Here, mainMenuToAPI is an object, which will implement all functions. As we discussed earlier, the
main form simply links menu items to functions in the mainMenuToAPI object. The implementation
is:

public bool unsupervised_Matching NToM
(string alFile, string a2File, string b1File)

{
try
{
script.unsupervisedFilter .findMatchNM
(‘alFile, a2File, b1File);
}
catch (Exception e)
{
appendText (e.ToString () + "\n");
return false;
}
return true;
}

In this statement, the script object contains all of the objects required for the ImageFinder project. In
particular, “script.unsupervisedFilter” is the unsupervised filter object. The parameters, (alFile, a2File,
blFile), indicate all signatures in alFile will be matched against all signatures in a2File. After
completion of the matching, the results will be stored in a file specified by the last parameter, b1File.

115

13.6 1:N Matching Design

1:N Matching compares one key image with the images in a search directory; the key image is selected
by the “Key” button. In a 1:N match, the 1-signature is computed at run time and the N-signature is
computed in advance.

To continue the Label Recognition problem for 1:N Matching:
e C(lick the “Key” button, in the *“\ex_label”directory, select the first image “L01008gi-
020501.jpg”;
e C(Click the menu item “Unsupervised/Matching/1:N (Key vs. al.txt)” button to complete a 1:N
Match.

The results are in file, b1.txt, which will be opened at this point:

ID Name Path Score X Y w H
L01008gi-020501 L01008gi-020501 jpg cAN 110 0 0 0 0
LO1008gi_r90 LO1008gi_190.jpg CA.\ 95 0 0 0 0
L02016alb-090100_m L02016alb-090100_m.jpg CA.\ 65 0 0 0 0

The output will always go to bl.txt and will overwrite earlier results. If you need to save the
results, simply save it to a different file.

13.7 1:N Matching Implementation

Double click menu item “Unsupervised/Matching/1:N (Key vs. al.txt)” and enter:

private void menultem21_Click(object sender, System.EventArgs e)

{

bool b = this.mainMenuToAPI .unsupervised_Matching_1ToN
textBox1.Text , dataDir + "al.txt", dataDir + "bl.txt");

}

Here, mainMenuToAPI is an object, which will implement all functions. As we discussed earlier, the
main form simply links menu items to functions in the mainMenuToAPI object. The implementation
is:

public bool unsupervised_Matching_1ToN
(string key, string alFile, string b1File)
{
bool b = false;
if (! System.IO .File .Exists (key))
{
appendText ("Please enter a valid Key!\n");
return false;

}
b = this.signature_Key_Signature (key);

116

if(1b)

{
appendText ("Key Signature computation fails!\n");
return false;

}

try

{

script.results_IN = script.unsupervisedFilter .findMatch1N
(script.imageSignature , alFile, blFile);

}
catch (Exception e)
{
appendText ("UnsupervisedFilter 1:N Matching fails:\n"
+ e.ToString () + "\n");
return false;
}
if (script.results_1N == null)
{
appendText ("UnsupervisedFilter 1:N Matching fails'\n");
return false;
}

if (script.results_1N.getStatus ())
{

setText (script.results_1N.toString () + "\n");

appendText ("" + script.results_1N.getNumberOfMatches ()

+" matches!\n");

}

else

{
appendText ("No Match!\n");
return false;

}

}

The following code simply makes sure the key image exists:

if (! System.IO .File .Exists (key))

{
appendText ("Please enter a valid Key!\n");

return false;

}

The next section of code computes the key signature:
b = this.signature_Key_Signature (key);

The next section code makes a 1:N Match:

117

try

{

script.results_IN = script.unsupervisedFilter .findMatch1N
(script.imageSignature , alFile, blFile);

}
catch (Exception e)
{
appendText ("UnsupervisedFilter 1:N Matching fails:\n"
+ e.ToString () + "\n");
return false;
}

The final section of code prints the 1:N Matching results:

if (script.results_1N.getStatus ())
{
setText (script.results_1N.toString () + "\n");

appendText ("" + script.results_1N.getNumberOfMatches ()
+" matches!\n");

}

else

{
appendText ("No Match!\n");
return false;

}

118

14. BioFilters

The BioFilter matches two whole images. The BioFilter is better than Unsupervised Matching, but it
requires a process called training. Training teaches the BioFilter who should match with whom. The
BioFilter learns how to match the image features.

e The advantage of the BioFilter is that it does not require a lot of training data.
e The disadvantage of the BioFilter is that it has a lower identification rate than the Neural Filter.

ﬂgAttrasoft ImageFinder 7.0, http://attrasoft.com == 1[
Signature Unsupervised | BioFilter MeuralFilter Library MeuralMet Counfing Batch Examples Help
Souweioy |
Kev CiProgray Matching b Edit match. <t gi_ra0.jpg Change Play/Stop
Source ChPrograr E;ﬂ:j«galysws : Check match.bxt —ID“ —IL‘VE
Matching |Help | musge Proce Whiatis This ? iy ey
Traning
] Expecting [ImageFinder 7.0]
e e] . |UmageFinder 7.0] Wil == e o
Mm‘—q : BAGLE o

W W
£ T

Source 1: ¥ Result 1: 1 Match

o b b F b

Fitered | Ovigind | Segment | Parameterl. cex | F| 2| 2| F| =] o] =] ®]

Signature Filter: Create and display '1' signature (key signature) for 1:M Matching,

Figure 14.1 Training Menu.

The chapter project is located at:
c:\transapplet70\imagefinder\.

The executable file is located at:
c:\transapplet70\imagefinder\bin\Release\.

We also call this folder “.\”. That is, “.\” is “c:\transapplet70\imagefinder\bin\Release\”. The data is
located at: “.\ex_label” or “c:\transapplet70\imagefinder\bin\Release\ ex_label”.

14.1 BioFilter Menu

The BioFilter Matching will have four steps:

119

Signatures
Training
Matching
Analysis

We discussed Signature Computation in earlier chapters. The BioFilter Matching is very similar to the
Unsupervised Matching in the last chapter.

Training uses the data collected in advance to teach the BioFilter how to match. Training requires two
files, t1.txt and match.txt.

e Tl.txt is the signature file, which contains many signatures. Each image is converted into a

signature.

e Match.txt is a list of matching pairs. This file will teach the ImageFinder who will match with
whom. You must prepare this file.

14.2 BioFilter API

The following table lists the BioFilter functions.

Functions Descriptions
bool training (string al_txt, string match_txt) Trains the
BioFilter.
Attrasoft. TransApplet70.Results_IN .Results_1N Makes a 1:1
findMatchl11 matching

(Attrasoft.TransApplet70.ImageSignature70.ImageSignature sigl,
Attrasoft. TransApplet70.ImageSignature70.ImageSignature sig2);

Attrasoft. TransApplet70.Results_IN .Results_1N findMatch11
(string pathl, string path2);

Attrasoft. TransApplet70.Results_IN .Results_1N findMatchl11
(Bitmap left, Bitmap right);

Attrasoft. TransApplet70.Results_1N.Results_1N findMatch1N Makes a 1:N
(Attrasoft. TransApplet70.ImageSignature70.ImageSignature sig, matching
string alFile, string b1File);

Attrasoft. TransApplet70.Results_1N.Results_1N findMatch1N
(string keyuPath, string alFile, string b1File)

Attrasoft. TransApplet70.Results_1N.Results_1N findMatch1N
(Bitmap keyImage, string alFile, string b1File)

bool findMatchNN (string alFile, string b1File); Matches all image
bool findMatchNM (string alFile, string a2File, string b1File); signatures in file
alFile against all

image signatures in
alFile or a2File

120

and saves the
results to b1File.

14.3 Training Design

Training teaches the ImageFinder what to look for. The BioFilter training requires two files, t1.txt and
match.txt:

e Tl.txtis the signature file, which contains many signatures. Each image is converted into a
signature.

e Match.txt is a list of matching pairs. This file will teach the ImageFinder who will match with
whom.

These two file names, tl.txt and match.txt, for training are fixed for users; users cannot change the
names of these two files. Users obtain tl.txt through the signature computation process discussed in
earlier chapters. Users have to prepare match.txt for each problem.

The match.txt looks like this:

152

1 L0O1008gi_r90 L01008gi-020501

2 LO1008KEY_m LO1008key-082301_m
3 L010103C LO10103C-081502_m
4 L01010co_m LO1010CODE_m

5 LO10163C_m L010163C-083100_m

Line 1 is the number of matches in this file. This match file indicates images, L0O1008gi_r90, will
match with image, L01008gi-020501. Each line has the following format:

Number, tab, filename, tab, filename.
Note:
You MUST have a tab between the three columns;

The file names do not contain “.jpg”.

There are two common errors:

(1) The Tab is replaced by a space;
(2) The number of rows is less than the first number in the file.

Once you get the two files prepared, click “BioFilter\Training\Training” to train the BioFilter. (Figure

14.1)

14.4 Training Implementation

121

Double click menu item “BioFilter\Training\Training” and enter:

private void menultem39_Click(object sender, System.EventArgs e)
{
this.mainMenuToAPI .bioFilter Train_Train
(dataDir + "t1.txt" , dataDir + "match.txt");

Here, mainMenuToAPI is an object, which will implement all functions. As we discussed earlier, the
main form simply links menu items to functions in the mainMenuToAPI object. The implementation
is:

public bool bioFilter_Train_Train (string al_txt, string match_txt)

{

script.bioFilter.training (al_txt, match_txt);
return true;

14.5 Parameters

@Parameters : =10l x|

Image Preprocessing | IPP Parameters |

Image Processing |2. Sobel 2 ﬂ IP Parameters |
|1. Drark Background 128 ﬂ
[2- Medium |

Normalization [Fieduction Fiter. Int, &va | M Parameters |
@ ISignatureFiIter 0 ﬂ
Unzsupervized Filter LUSF Parameters |

BioFiltker BF Parametears

MeuralFilter INeuraIFiIter 100 Meuronz [Small] ﬂ MF Parameters |
Heural et INeuraI Met: 100:100 ﬂ MT Parameters |

Set EdgeFiler 2.
Set ThresholdFilker 1.

Set CleanUpFilker 2. oK

Set Redeuction Filter O Reduction Filker: Int, Awvg |
Set SignatureFilter 0. SignatureFiler 0

Set Meural Filter 2: MeuralFilter 100 Meurans [Small]

Set NeuralMet Filker 0 Neural Met: 100x100

Figure 14.2 Parameter Window.

122

The ImageFinder has many parameters. Changing these parameters will change the output of the
computations. The parameters are set by clicking the ‘“Parameter” button in the main form, which will
open the Parameter Window in Figure 14.2. You will adjust the ImageFinder parameters here.

The default setting uses the Signature Filter 0, which is the least accurate Signature Filter. There are 20
Signature filters in the current version of the ImageFinder. In general, when you have less data, use
less accurate Signature filters; when you have more data, use more accurate Signature filters.

There are really no hard guidelines; the following is only a rough reference for the BioFilter:

Signature Filter Training Pairs

0 10

1 30

2 30

3 70

4 70

5 150
6 150
7 310
8 310
9 630
10 630
> 11 1000

We have 152 pairs, so we will choose Signature Filter 6. In Figure 14.2, select Signature Filter 6 from
line 6.

14.6 Example: Label Recognition Training

We now revisit the Label Recognition example first introduced in the Unsupervised Filter. We must
prepare the match.txt file for training. This file is already prepared for you and we will simply open it
and save it to match.txt. The steps are:

Match.txt
e Open the file, “\data\match_ex_label.txt”. This file lists 152 matching pairs. Save it to
match.txt (overwrite the existing file). Now the training file is prepared.

T1.txt:
e C(Click the “Source” button, go to “ex_label” directory and select any file in the folder. This will
specify the input directory.
e C(Click the Source “>” button a few times to see the images;

e C(Click menu item “Signature/N Signature (al.txt)” to get signature file, al.txt file;
e C(Click menu item “Signature/Copy al.txt to t1.txt” to get the training file, t1.txt.

Note: Here tl.txt is for training and al.txt is for 1:N Matching and N:N Matching.

123

Training
e Click “BioFilter\Training\Training” to train the BioFilter.
You should get this message at the end of the text window:

Total Number of Matches = 152
Number of Images that have No Match = 152

There are 304 images in 152 pairs. The match.txt listed 152 pairs.

e The first line, Total Number of Matches = 152, indicates the training used 152 pairs.

e The second line, Number of Images that have No Match = 152, indicates 152 out of 304 images
does not have a match, which is correct. This is because in match.txt which has 152 pairs, (A,
B), only A will match with B, but B will not match with A.

Now, the BioFilter is trained for the Label Recognition problem. We will continue this example in
the next section, N:N Matching.

14.7 N:N Matching Design

N: N Matching compares each image, al.txt, with every image in the al.txt:
e Click menu item “BioFilter/Matching/N:N (al.txt vs. al.txt)” button to complete a N:N Match.

The results will go to a file, bl.txt, which will be opened right after the click. The file will look like
this:

C:\...\L01008gi-020501.jpg
C:\...\L01008gi-020501.jpg
638
C:\...\LO1008gi_r90.jpg
510

C:\..\L01008gi_r90.jpg
C:\...\L01008gi-020501.jpg
510
C:\...\LO1008gi_r90.jpg
638

Again, line 1 in each block is the input and the rest of the lines are output. Go all the way to the
end of the file; the last line indicates the number of matches in the N:N Matching.

14.8 N:N Matching Implementation

124

Double click menu item “BioFilter/Matching/N:N (al.txt vs. al.txt)” and enter:

private void menultem43_Click(object sender, System.EventArgs e)

{
this.mainMenuToAPILbioFilter_Matching NToM

(dataDir + "al.txt", dataDir + "al.txt", dataDir + "b1.txt");

}

Here, mainMenuToAPI is an object, which will implement all functions. As we discussed earlier, the
main form simply links menu items to functions in the mainMenuToAPI object. The implementation
is:

public bool bioFilter Matching NToM
(string alFile, string a2File, string b1File)

{
try
{
script.bioFilter .findMatchNM (alFile, a2File, b1File);
}
catch (Exception e)
{
appendText (e.ToString () + "\n");
return false;
}
return true;
}

In this statement, the script object contains all of the objects required for the ImageFinder project. In
particular, “script.BioFilter” is the BioFilter object. The parameters, (alFile, a2File, b1File), indicate
all signatures in alFile will be matched against all signatures in a2File. After completion of the
matching, the results will be stored in a file specified by the last parameter, b1File.

14.9 1:N Matching Design

1:N Matching compares one key image with the images in a search directory; the key image is selected
by the “Key” button.

To continue the Label Recognition problem for 1:N Matching:

e C(Click the “Key” button, in the “ex_label” directory, select the first image “LO1008gi-
020501.jpg”;

e (Click menu item “BioFilter/Matching/1:N (Key vs. al.txt)” button to complete a 1:N Match.
e The results are in file, b1.txt, which will be opened at this point:

ID Name Path Score X Y \% H
L01008gi-020501 L01008gi-020501.jpg C:\...\ex_label\ 638 0 0 0 0
L01008gi_r90 L01008gi_r90.jpg C:\...\ex_label\ 510 0 0 0 0

125

14.10 1:N Matching Implementation

Double click menu item “BioFilter/Matching/1:N (Key vs. al.tx)” and enter:

private void menultem41_Click(object sender, System.EventArgs e)

{
bool b = this.mainMenuToAPI .bioFilter_Matching_1ToN

(textBox1.Text, dataDir + "al.txt", dataDir + "bl.txt");
}

Here, mainMenuToAPI is an object, which will implement all functions. As we discussed earlier, the
main form simply links menu items to functions in the mainMenuToAPI object. The implementation
is:

public bool bioFilter_Matching_1ToN
(string key, string alFile, string b1File)

{
bool b = false;

if (! System.IO .File .Exists (key))

{
appendText ("Please enter a valid Key!\n");

return false;

}

b = this.signature_Key_Signature (key);
if(!b)
{
appendText ("Key Signature computation fails!\n");
return false;

try

{
script.results_1N = script.bioFilter .findMatch1N

(script.imageSignature, alFile, blFile);

}

catch (Exception e)

{
appendText ("BioFilter 1:N Matching fails:\n"
+ e.ToString () + "\n");
return false;

}

if (script.results_1N == null)

{

126

appendText ("BioFilter 1:N Matching fails!\n");
return false;

}

if (' script.results_1N.getStatus ())
{
setText (script.results_1N.toString () + "\n");
appendText ("" + script.results_1N.getNumberOfMatches ()
+" matches!\n");

}

else

{
appendText ("No Match!\n");
return false;

}

}

The following code simply makes sure the key image exists:

if (! System.IO .File .Exists (key))
{

appendText ("Please enter a valid Key!\n");
return false;

}

The next section of code computes the key signature:
b = this.signature_Key_Signature (key);
The next section code makes a 1:N Match:
try
{

script.results_1N = script.bioFilter .findMatch1N
(script.imageSignature, alFile, blFile);

}

catch (Exception €)

{
appendText ("BioFilter 1:N Matching fails:\n"
+ e.ToString () + "\n");
return false;

}

The final section of code prints the 1:N Matching results:

if (script.results_1N.getStatus ())
{

setText (script.results_1N.toString () + "\n");
appendText ("" + script.results_1N.getNumberOfMatches ()

127

+" matches!\n");

}

else

{
appendText ("No Match!\n");
return false;

}

128

15. NeuralFilters

The NeuralFilter matches two whole images, which is similar to the BioFilter. The NeuralFilter is
better than both Unsupervised Filter and BioFilter, but it requires a large amount of training data.
Training data teaches the NeuralFilter who should match with whom. In comparison to early filters:

e The advantage of the NeuralFilter is that it is more accurate.
e The disadvantage of the NeuralFilter is that it requires more training data than the BioFilter.

The chapter project is located at:
C:\transapplet70\imagefinder\.
The executable file is located at:
c:\transapplet70\imagefinder\bin\Release\.
We also call this folder “.\”. That is, “.\” is “c:\transapplet70\imagefinder\bin\Release\”. The data is

located at: “.\ex_label” or “c:\transapplet70\imagefinder\bin\Release\ ex_label”.

15.1 NeuralFilter Menu

The NeuralFilter Matching will have four steps:

Signatures
Training
Matching
Analysis

This process is identical to the Bio Filter in the last chapter. The NeuralFilter menu items are identical
to the BioFilter menu items.

129

H Attrasoft ImageFinder 7.0, http://attrasoft.com i I 1[
Signature Unsupervised BioFilter ‘ MeUraFiter Library MeuralMet Counfing Batch Examples Help

Training >
[_kev | [Click Key buton to s« s B 11 eft vs Right _Change | Playiston|
Saurce Click Mode to select MM Analysis 1N (Key vs alixt) ﬂl i‘
Results ’ : :
Mistchine | Help | Imgs Processing | Wihat is This 7 MM (ALEt vs altxd)
M:MZ (altet vs aZ.txt)
Ready! MM3 (@lixt vs a3t
M:M4 (altet vs ad.ter) fick the Mode button
< select an input type:
Please: Directory,
. i File,
Click Key Button; Sub Directory,
File Segment,
Select an Image. Access,
Access Segment,
*.avi file, and
The key will be Live Video.
1 | Click Source button to
displayed here! i o s

Source 1: ¥ Result 1: 1 Match

Fitered | Ovigind | Segment | Paramster | cex | F| =] 2| ®| =] <] u| B] x|
xpwh Iu o 0 Iu

Status

Figure 15.1 NeuralFilter Menu.

15.2 NeuralFilter API

The following table lists the NeuralFilter functions.

Functions Descriptions

bool training (string al_txt, string match_txt) Trains the
NeuralFilter.

Attrasoft. TransApplet70.Results_IN .Results_1N Makes a 1:1

findMatchl11 matching

(Attrasoft.TransApplet70.ImageSignature70.ImageSignature sigl,

Attrasoft. TransApplet70.ImageSignature70.ImageSignature sig2);

Attrasoft. TransApplet70.Results_IN .Results_1N findMatchl11

(string pathl, string path2);

Attrasoft. TransApplet70.Results_IN .Results_1N findMatch11

(Bitmap left, Bitmap right);

Attrasoft. TransApplet70.Results_1N.Results_1N findMatch1N Makes a 1:N

(Attrasoft. TransApplet70.ImageSignature70.ImageSignature sig, matching

string alFile, string b1File);

Attrasoft. TransApplet70.Results_1N.Results_1N findMatch1N
(string keyuPath, string alFile, string b1File)

Attrasoft. TransApplet70.Results_1N.Results_1N findMatch1N
(Bitmap keyImage, string alFile, string b1File)

bool findMatchNN (string alFile, string b1File);
bool findMatchNM (string alFile, string a2File, string b1File);

Matches all image
signatures in file

130

alFile against all
image signatures in
alFile or a2File
and saves the
results to b1File.

15.3 Parameters

The ImageFinder has many parameters. Changing these parameters will change the output of the
computations. The parameters are set by clicking the “Parameter button”, which will open the
Parameter Window in Figure 15.2. You will adjust the ImageFinder parameters here.

The default setting uses the Signature Filter 0, which is the least accurate Signature Filter. There are 20
Signature filters in the current version of the ImageFinder. In general, when you have less data, use

less accurate Signature filters; when you have more data, use more accurate Signature filters.

There are really no hard guidelines; the following is only a rough reference for the NeuralFilter:

Signature Filter BioFilter (Pairs) Neural Filter (Pairs)

0 10 50

1 30 150
2 30 150
3 70 200
4 70 200
5 150 400
6 150 400
7 310 600
8 310 600
9 630 1000
10 630 1000
> 11 1000 2000

15.4 Training Design

We introduced the Label Recognition problem with both the Unsupervised Filter and the BioFilter.
We will choose “Signature Filter 9” in this chapter. In Figure 15.2, select Signature Filter 9 from line
6.

131

@Parameters =10l x|

Image Preprocessing | IPP Parameters |

Image Processing |2. Sobel 2 ﬂ IP Parameters |
|1. Drark Background 128 ﬂ
[2- Medium |

Normalization [Fieduction Fiter. Int, &va | M Parameters |
@ ISignatureFiIter 0 ﬂ
Unzsupervized Filter LUSF Parameters |

BioFiltker BF Parametears |

NeuralFilter INeuraIFiIter 100 Newrons [Small] ﬂ MF Parameters |

Neural Met INeuraI Met: 100x100 ﬂ MT Parameters |
Set EdgeFiler 2.

Set ThresholdFilker 1.
Set CleanUpFilker 2.

Set Redeuction Filter O Reduction Filker: Int, Awvg
Set SignatureFilter 0. SignatureFiler 0

Set Meural Filter 2: MeuralFilter 100 Meurans [Small]
Set NeuralMet Filker 0 Neural Met: 100x100

0K |

Figure 15.2 Parameter Window.

We now revisit the Label Recognition example. We must prepare the match.txt file for training. This

file is already prepared for you and we will simply open it and save it to match.txt. The steps are:

Match.txt

e Open the file, “\data\match_ex_label.txt”. This file lists 152 matching pairs. Save it to

match.txt (overwrite the existing file). Now the training file is prepared.

T1.txt:

e C(Click the “Source” button, go to “.\ex_label” directory and select any file in the folder. This

will specify the input directory.

e C(Click the Source “>” button a few times to see the images;

e C(Click menu item “Signature/N Signature (al.txt)” to get signature file, al.txt file
e C(Click menu item “Signature/Copy al.txt to t1.txt” to get the training file, t1.txt.

Note: Here tl.txt is for training and al.txt is for 1:N Matching and N:N Matching.

Training

e C(Click “Neural Filter\Training\Training” to train the NeuralFilter.

You should get this message at the end of the text window:

Number of Matches = 152
Neural Filter Training Completed!

132

The match.txt listed 152 pairs. The first line, Total Number of Matches = 152, indicates the training
used 152 pairs. Now, the Neural Filter is trained for the Label Recognition problem. We will
continue this example in the next section, N:N Matching.

15.5 Training Implementation

Double click menu item “NeuralFilter\Training\Training” and enter:

private void menultem64_Click(object sender, System.EventArgs e)
{
this.mainMenuToAPI .neuralFilter Train_Train
(dataDir + "t1.txt" , dataDir + "match.txt");

}

Here, mainMenuToAPI is an object, which will implement all functions. As we discussed earlier, the
main form simply links menu items to functions in the mainMenuToAPI object. The implementation
is:

public bool neuralFilter_Train_Train (string al_txt, string match_txt)
{
bool b = script.neuralFilter .training (al_txt, match_txt);
return b;

}

15.6 N:N Matching Design

N: N Matching compares each image in al.txt with every image in the al.txt:

e C(Click menu item ‘“NeuralFilter/Matching/N:N (al.txt vs. al.txt)” button to complete a N:N
Match.

The results will go to a file, bl.txt, which will be opened right after the click. The file will look like
this:

C:\...\ex_label\L01008gi-020501.jpg
C:\...\ex_label\L01008gi-020501.jpg
242307
C:\...\ex_labe\L01008gi_r90.jpg
153038

C:\...\ex_label\L01008gi_r90.jpg
C:\...\ex_label\L01008gi-020501.jpg
153038
C:\...\ex_labe\L01008gi_r90.jpg
242307

133

Again, line 1 in each block is the input and the rest of the lines are output. Go all the way to the end of
the file; the last line indicates the number of matches in the N:N Matching.

15.7 N:N Matching Implementation

Double click menu item “NeuralFilter/Matching/N:N (al.txt vs. al.txt)” and enter:

private void menultem71_Click(object sender, System.EventArgs e)

{
this.mainMenuToAPIneuralFilter_Matching_ NToM

(dataDir + "al.txt", dataDir + "al.txt", dataDir + "bl.txt");
}

Here, mainMenuToAPI is an object, which will implement all functions. As we discussed earlier, the
main form simply links menu items to functions in the mainMenuToAPI object. The implementation
is:

Public bool neuralFilter_Matching_ NToM
(string alFile, string a2File, string b1File)

{
try{
script.neuralFilter.findMatchNM (alFile, a2File, b1File);
}
catch (Exception e)
{
appendText (e.ToString () + "\n");
return false;
}
return true;
}

In this statement, the script object contains all of the objects required for the ImageFinder project. In
particular, script.neuralFilter is the NeuralFilter object. The parameters, (alFile, a2File, blFile),
indicate all signatures in alFile will be matched against all signatures in a2File. After completion of
the matching, the results will be stored in a file specified by the last parameter, b1File.

15.8 1:N Matching Design

1:N Matching compares one key image with the images in the al.txt; the key image is selected by the
“Key” button.

To continue the Label Recognition problem for 1:N Matching:

134

e C(Click the “Key” button, in the ‘“ex_label”’directory, select the first image “LO1008gi-
020501 .jpg”;

e Click menu item “NeuralFilter/Matching/1:N (Key vs. al.txt)” button to complete a 1:N Match.

e The results are in file, bl.txt, which will be opened at this point:

ID Name Path Score X Y w H
L01008gi-020501 L01008gi-020501.jpg C:\...\ex_label\ 242307 0 0 0 0
L01008gi_r90 L01008gi_r90.jpg C:\...\ex_label\ 153038 0 0 0 0

15.9 1:N Matching Implementation

Double click menu item “NeuralFilter/Matching/1:N (Key vs. al.tx)” and enter:

private void menultem66_Click(object sender, System.EventArgs e)
{
this.mainMenuToAPI .neuralFilter_Matching_1ToN
(textBox1.Text, dataDir + "al.txt", dataDir + "bl.txt");

}

Here, mainMenuToAPI is an object, which will implement all functions. As we discussed earlier, the
main form simply links menu items to functions in the mainMenuToAPI object. The implementation
1s:

public bool neuralFilter_Matching_1ToN
(string key, string alFile, string b1File)

{
bool b = false;

if (! System.IO .File .Exists (key))

{
appendText ("Please enter a valid Key!\n");

return false;

}

b = this.signature_Key_Signature (key);
if(!b)
{
appendText ("Key Signature computation fails!\n");
return false;

try
{

script.results_IN = script.neuralFilter.findMatch1N
(script.imageSignature, alFile, blFile);
}

catch (Exception e)

{

135

appendText ("NeuralFilter 1:N Matching fails:\n"
+ e.ToString () + "\n");
return false;

}
if (script.results_1N == null)
{
appendText ("NeuralFilter 1:N Matching fails!\n");
return false;
}

if (script.results_1N.getStatus ())
{
setText (script.results_1N.toString () + "\n");
appendText ("" + script.results_1N.getNumberOfMatches ()
+" matches!\n");

}
else
{
appendText ("No Match!\n");
return false;
}
return createFile (key, blFile);
}

The following code simply makes sure the key image exists:

if (! System.IO .File .Exists (key))
{

appendText ("Please enter a valid Key!\n");
return false;

}

The next section of code computes the key signature:
b = this.signature_Key_Signature (key);
The next section code makes a 1:N Match:

try

{
script.results_IN = script.neuralFilter.findMatch1N

(script.imageSignature, alFile, blFile);
}

catch (Exception e)

{
appendText ("NeuralFilter 1:N Matching fails:\n"
+ e.ToString () + "\n");
return false;

136

}

The final section of code prints the 1:N Matching results:

if (' script.results_1N.getStatus ())
{
setText (script.results_1N.toString () + "\n");
appendText ("" + script.results_1N.getNumberOfMatches ()
+" matches!\n");

}
else
{
appendText ("No Match!\n");
return false;
}

137

16. Dynamic Library

In the last a few chapters, we introduced 1:N Match and N:N Match, where N is fixed. This chapter
will introduce the Dynamic Library where N can be updated via:

e insertion,

e deletion, and

e replacement.

The chapter project is located at:
c:\transapplet70\imagefinder\.
The executable file is located at:

c:\transapplet70\imagefinder\bin\Release\.

We also call this folder “.\”. That is, “.\” is “c:\transapplet70\imagefinder\bin\Release\”. We will
introduce a Logo Recognition example. The data is located at:

Aex_dynamic_lib\ Original logo data
Aex_dynamic_lib\add\ Add to the library later

16.1 Dynamic Library Menu

The Dynamic Library works only for the NeuralFilter Matching; there are six steps:

Parameters

Signatures

Training

Matching

Update Dynamic Library and Match Again
Analysis

Figure 16.1 and Figure 16.2 shows the dynamic library menu. Please create the menu items
accordingly.

138

I Attrasoft ImageFinder 7.0, http://attrasoft.com i I 1[
Signafure Unsupervised BioFilter MeuralFiter | Library Meuraet Counfing Batch Examples Help
[WETRCRElt-Rd Create Libl (Copy al.bet to libl.ixt)
[_key | [CickKey butonio selecta key im: Matching » Create Lb2 (Copy a2.txt to lb2.txt) || Pawiston]
Source |C\i|:|< Mode to select an input type, Analysis » Load ib1.txt J Live
ResLits 4 :
Load b2, txt
Matching |Help | Trusge Processing | What is This 7 b e st
i Frint Library
Foad Clear Library
Please: Backup (ib1_bk.txt)
. 2 Backup (ib2_bk.txt)
Cll Ck Ke)" BUtton; Save ib1.txt, lb2.xt to b3 txt
Select an Image. add Key)
Delete (Key)
. Replace (Key)
The key will be
1 | Click Source button to
displayed here! s i
Fitered | Ovigind | Segment | Paramster | cex | F| =] 2| ®| =] <] u| B] x|
aywh |u o o |u Source 1: H Result 1:1 Match
Status
. . .
Figure 16.1 Dynamic Library Menu, 1 of 2.
I Attrasoft ImageFinder 7.0, http://attrasoft.com i I 1[

Signafure Unsupervised BioFilter MeuralFiter | Library Meuraet Counfing Batch Examples Help

Maintenanice

»
&I |C\ick Key buttan to select a key im¢ [T »
»

Source |C\i|:|< Mode ta select aninput type, Artalysis

Matching |Help | Trusge Processing |

Please:
Click Key Button;
Select an Image.

The key will be
displayed here!

Fitered | Ovigind | Segment |

Resuits r
What is This 7

1M (Key ve libbet) Change Plav/Stop

MM (@Lkxt vs libxt) [Mode | Live |

Ready!

Click the Mode button
to select an input type:
Directory,

File,
Sub-Directory,
File Segment,
Access,

Access Segment,
*.avi file, and
Live Video.

Click Source hutton to
specify the input.

o b b F b

Parameter | Clear
Sarrce 1: H Basalt

[0 o o M M s

1: 1 Match

Status

Figure 16.2 Dynamic Library Menu, 2 of 2.

16.2 Dynamic Library API

The following table lists the dynamic library functions.

Functions

Descriptions

Comments

int getLibraryID ()

Gets the Library ID
(optional).

void setLibraryID (string

Sets the Library ID

139

X) (optional).

bool load () Loads the default master
library, lib1.txt.

bool load (string Loads master library

fileName) specified by fileName.

bool load (string Loads two libraries

fileNamel, string specified by fileNamel

fileName?2) and fileName?2.

bool clear() Clears the current
library from RAM only.

bool backup () Saves current library to
the default file,
libl_bk.txt.

bool backup (string Saves current library to

fileName) a back file.

bool addSignature Adds a signature to a

(ImageSignature sig) loaded image library in
RAM.

bool deleteSignature Deletes a signature from

(ImageSignature sig) a loaded image library
in RAM.

bool deleteSignature Deletes a signature from

(string ID) a loaded image library
in RAM.

bool replaceSignature Replaces a signature

(ImageSignature sig) from a loaded image
library in RAM.

bool mergeLibrary Merges two signature

(string libFilel, string libraries into a single

libFile2, string outputLib) | library.
Input:

string libFilel

string libFile2

string outputLib
Output:

A text file that
contains the library of
signatures from both
input libraries.

16.3 Creating Master Library

Up to this point when we have done 1:N or N:N Matching, the N-images have been fixed. The
Dynamic Library allows you to update the N-images, including inserting, deleting, and replacing
signatures. We now create the master library. The master library file is lib1.txt.

140

First of all, we will set the parameters for the Logo Recognition example. The ImageFinder has
many parameters. Changing these parameters will change the output of the computations. Click the
Parameter button, and set:

Signature Filter = “Signature Filter 157;
NeuralFilter/Fault Tolerance scale = 10;
NeuralFilter/Blurring = 0;
NeuralFilter/Sensitivity = 0;

To compute the N-signatures:

e C(Click the “Source” button to select directory, “.\ex_dynamic_lib\”, then select any file in this
folder;
e C(Click “Signature/N Signature (al.txt)” to compute the signatures in al.txt.

Now we have created the al.txt file. To use the Dynamic Library, you have to create a library file
libl.txt. To create a library file, open al.txt and save it to lib1.txt.

16.4 Training Design

The dynamic library will use the same NeuralFilter object in the last chapter. Therefore, the training
implementation is already completed. Again, training requires two files:

Match.txt
e Open the file, “.\data\match_ex_dynamic_lib.txt”. Save it to match.txt (overwrite the existing
file). Now the training file is prepared.

T1.txt:
¢ In the last step, we obtained al.txt;
e C(Click menu item “Signature/Copy al.txt to t1.txt” to get the training file, t1.txt.

Training
e Click “NeuralFilter\Training\Training” to train the Neural Filter.

16.5 Load Dynamic Library

The dynamic library uses a file libl.txt as a master library file. Before we can use the dynamic
library, this file must be loaded into the dynamic library. To load the library file, click
“Library/Maintenance/Load lib1.txt”.

Double click menu item “Library/Maintenance/Load lib1.txt” and enter:
private void menultem89_Click (object sender, System.EventArgs e)
{
this.mainMenuToAPLlibrary_loadLib (dataDir +"lib1.txt");

141

}

Here, mainMenuToAPI is an object, which will implement all functions. As we discussed earlier, the
main form simply links menu items to functions in the mainMenuToAPI object. The implementation
is:

public bool library_loadLib (string lib1_txt)

{
if (script.imageLibrary == null)
{
appendText ("Unable to find a library \n");
return false;
}
try
{
bool b = script.imageLibrary.load (libl_txt);
if (b)
{
appendText ("Library 1 loaded!\n");
}
}
catch (Exception ee)
{
appendText (ee.ToString () + "\n");
return false;
}
return true;
}

The following statement loads the library:

bool b = script.imageLibrary.load (libl_txt);

16.6 Library M:N Matching

In an N:M Matching, the N-images are in al.txt and M-images are in libl.txt. To make a M:N
Matching,

e C(Click menu item “Library/Matching/N:M (al.txt vs. libl.txt)” menu item to complete a N:M
Match.
Double click menu item “Library/Matching/N:M (al.txt vs. libl.txt)” and enter:

private void menultem100_Click(object sender, System.EventArgs e)

{
bool b = this.mainMenuToAPLlibrary_Matching N_M

(dataDir + "al.txt", dataDir + "bl.txt");

142

}
Here, mainMenuToAPI is an object, which will implement all functions. As we discussed earlier, the
main form simply links menu items to functions in the mainMenuToAPI object. The implementation

1S:

public bool library_Matching N_M (string al_txt, string b1_txt)

{

if (script.imageLibrary == null)

{
appendText ("Dynamic Library not available!\n");
return false;

}

bool b = script.neuralFilter .setLibrary (script.imageLibrary);

if (!b)

{

appendText ("Dynamic Library Assignment Fails!\n");
return false;

}
try
script.neuralFilter.findMatchNN (al_txt, bl_txt);
}
catch (Exception e)
{
appendText (e.ToString () + "\n");
return false;
}
return true;
}

In this statement, the script object contains all of the objects required for the ImageFinder project. In
particular, “script.imageLibrary” is the dynamic library object.

The following statement assigns the dynamic library to the NeuralFilter object, “script.NeuralFilter:

bool b = script.neuralFilter .setLibrary (script.imageLibrary);
if (!b)
{
appendText ("Dynamic Library Assignment Fails!\n");
return false;

}

Once the NeuralFilter object obtains this library, it will match images against this master library.

143

16.7 Library 1:N Matching

To make 1:N Matching via the library,

e C(Click the “Key” button, in the “.\ex_dynamic_lib” directory, select the first image “A10.jpg”;
e Click menu item “Library/Matching/1:N (Key vs. libl.txt)” button to complete a 1:N Match.

Double click menu item “Library/Matching/1:N (Key vs. lib1.txt)” and enter:

private void menultem98_Click(object sender, System.EventArgs e)
{
bool b = this.mainMenuToAPILlibrary_Matching_1_N
(textBox1.Text , dataDir + "bl.txt");

}

Here, mainMenuToAPI is an object, which will implement all functions. As we discussed earlier, the
main form simply links menu items to functions in the mainMenuToAPI object. The implementation

1S:

public bool library_Matching_1_N(string key, string b1File)
{
if (script.imageLibrary == null)
{
appendText ("Dynamic Library not available!\n");
return false;

}

bool b = script.neuralFilter .setLibrary (script.imageLibrary);
if (!b)
{
appendText ("Dynamic Library Assignment Fails!\n");
return false;

}
b = false;

if (! System.IO .File .Exists (key))

{
appendText ("Please enter a valid Key!\n");

return false;

}

b = this.signature_Key_Signature (key);

if(!'b)

{
appendText ("Key Signature computation fails!\n");
return false;

try

144

{

script.results_IN = script.neuralFilter.findMatch1N
(script.imageSignature);

}

catch (Exception €)

{
appendText ("NeuralFilter 1:N Matching fails:\n"
+ e.ToString () + "\n");
return false;

}

if (script.results_1N == null)

{
appendText ("NeuralFilter 1:N Matching fails!\n");
return false;

}

if (script.results_1N.getStatus ())

{
setText (script.results_1N.toString () + "\n");
appendText ("" + script.results_1N.getNumberOfMatches ()
+" matches!\n");

}

else

{
appendText ("No Match!\n");
return false;

}

}

The only difference between this 1:N Matching and the NeuralFilter 1:N Matching introduced earlier is
the following statement:

bool b = script.neuralFilter .setLibrary (script.imageLibrary);

In a normal 1:N Matching, the neural filter gets the library from al.txt. This statement assigns the
dynamic library, “script.imageLibrary”, to the NeuralFilter object, “script.NeuralFilter”.

16.8 Library Updating Design

Now, we will add images in folder, “.\ex_dynamic_lib\add\”. To make 1:N Matching via the library,

e C(Click the “Key” button, in the “.\ex_dynamic_lib\add\” directory; select the image “A416.jpg”;
e C(Click menu item “Library/Matching/1:N (Key vs. lib1.txt)”” button to complete a 1:N Match.

You will get:
ID Name Path Score X Y w H
A324 A324.jpg C:\...\ex_dynamic_lib\ 142953 0 0 0 0

145

B10 B10.jpg C:\...\ex_dynamic_lib\ 137606 0 0 0 0
Al66 A166.jpg C:\...\ex_dynamic_lib\ 135926 0 0 0 0
Al142 Al142.jpg C:\...\ex_dynamic_lib\ 133745 0 0 0 0
B206 B206.jpg C:\...\ex_dynamic_lib\ 132967 0 0 0 0
Bl11 B1l.jpg C:\...\ex_dynamic_lib\ 130253 0 0 0 0
B35 B35.jpg C:\...\ex_dynamic_lib\ 124340 0 0 0 0
B76 B76.jpg C:\...\ex_dynamic_lib\ 123182 0 0 0 0

To add this image, A416.jpg, to the library, click ‘“Library/Maintenance/Add (Key)”.
Now, make a 1:N Match again:
e C(Click menu item “Library/Matching/1:N (Key vs. lib1.txt)”” button to complete a 1:N Match.

You will get:

ID Name Path Score X
A416 A416.jpg C:\...\ex_dynamic_lib\add\ 345857 0
A324 A324.jpg C:\..\ex_dynamic_lib\ 142953 0
B10 B10.jpg C:\...\ex_dynamic_lib\ 137606 0
A166 A166.jpg C:\...\ex_dynamic_lib\ 135926 0
Al142 A142.jpg C:\...\ex_dynamic_lib\ 133745 0
B206 B206.jpg C:\...\ex_dynamic_lib\ 132967 0
B11 Bll.jpg C:\...\ex_dynamic_lib\ 130253 0
B35 B35.jpg C:\...\ex_dynamic_lib\ 124340 0
B76 B76.jpg C:\...\ex_dynamic_lib\ 123182 0

SCoococoocooo
CCOOOOOCCS
cocococoocooom

As you can see, A416.jpg has been added to the library. Now we will delete it from the library by

clicking “Library/Maintenance/Delete (Key)”. Now make a 1:N Match again:
e Click menu item “Library/Matching/1:N (Key vs. libl.txt)” button to complete a 1:N Match.

Now A416.jpg will no longer be in the output.

16.9 Update Implementation

Double click menu item “Library/Maintenance/Add (Key)”’ and enter:

private void menultem95_Click (object sender, System.EventArgs e)

{

if (! System.IO .File .Exists (textBox1.Text))

{
this.mainMenuToAPILappendText
("File does not exist: \n" + textBox1.Text + "\n");
return;

}

this.mainMenuToAPLlibrary_add (textBox1.Text);

}

Here, mainMenuToAPI is an object, which will implement all functions. As we discussed earlier,

the

main form simply links menu items to functions in the mainMenuToAPI object. The implementation

1S:

146

public bool library_add (string sImage)
{

script.imageSignature
= script.signatureFilter.getSignature (sImage);

if (script.imageSignature == null)

{
this.setLine ("Image Signature computation fails!");
return false;

}

if (script.imageSignature.getStatus () <=0)

{
this.setLine ("Image Signature computation fails!");
return false;

}

bool b = script.imageLibrary.addSignature (script.imageSignature);

return b;

}

The script object contains all of the objects required for the ImageFinder project. In particular,
“script.imageLibrary” is the dynamic library object. The first section of the code computes the image
signature. The next section of code checks the validity of the signature. The following statement inserts
the signature to the dynamic library:

bool b = script.imageLibrary.addSignature (script.imageSignature);

The menu item Delete and the menu item Replace can be implemented in a similar fashion and the
codes are provided in the project.

147

17. NeuralNet Filter

Up to this point, we have focused on matching whole images. The NeuralNet Filter matches a segment
of an image(s).

As we have seen, accurate matching via the NeuralFilter requires many matching pairs. Preparing
matching pairs for whole images means listing all pairs in the match.txt file.

Preparing matching pairs for image segments is much harder; therefore, rather than using the
NeuralFilter for image segments, we will use the Unsupervised Filter for image segments. As we have
seen, the Unsupervised Matching for image segments is not as accurate as the NeuralFilter.

Figure 17.1 Locating an Image Segment.
The chapter project is located at:
c:\transapplet70\imagefinder\.
The executable file is located at:
c:\transapplet70\imagefinder\bin\Release\.
We also call this folder “.\”. That is, “.\” is “c:\transapplet70\imagefinder\bin\Release\”.
In this chapter, we will introduce a Trademark Recognition example. The objective is to identify and

locate the trademarks in an image. Figure 17.1 shows a typical image. The data is stored in the folder,
“\input_auto_track”.

148

17.1 Key Segment Specification

A path, such as “c:\abc\xyz.jpg”, specifies the key image. The key segment is specified by a path and
(x, y, w, h). Here (x, y) is the coordinate of the upper left corner, w is the width, and h is the height.

An image segment is specified via its pixel values. For example, let an image be 256x256, then (0, 0,
128, 128) specifies a quarter of the image located in the upper left corner.

Figure 17.2 shows how to specify an image segment in 2 steps:

e Enter (X, y, w, h) into the four textboxes in Figure 17.2;
e C(Click the Segment button to enter (X, y, w, h) to the software.

Attrasoft ImageFinder 7.0, http://attrasoft.com | sl il
Signature Unsupervised BioFilter MeuralFiter Library MeuralMet Counfing Batch Settings Examples Help

Kev |C\\|u3?s\abm71,lmageﬂnder?[l\:nde\bm\Debug\mputﬁAuerack\lMAGEDDZ JPG Chanoe Plaw/Ston

Source |C\\lu3?s\abm71,lmageﬂnder?[l\:nde\bm\Debug\mputﬁAuanrack Ilode Live
Miatching | Halp | Tmags Procsssing |

ID: NA
A Mame: IMAGEDDZE. JPG
- e Fath: C:liu3_s\abm?1_imagefinder’
Uniod We Segment: 114 312 90 80
Score: NA |

€ s
i ® e /
s | e e e ﬁpmem|. = DR EEE T

% I2DD 30 130 130 Source 1N 1:1 Mateh o

MeuralNet Filter: 1:N Matching 4001 \

Figure 17.2 Specify an Image Segment.

Example. Specifying a Key Segment:

Click the “Key” button, in the “\input_auto_track” directory, select image “IMAGEQ002.jpg”;
e Enter (200, 30, 180, 180) to the segment textboxes in Figure 17.2.
e Click the “Segment” button and the segment is marked by a square in Figure 17.2..

17.2 NeuralNet Filter Menu

149

ﬂgAttrasoft ImageFinder 7.0, http://attrasoft.com == 1[
Signature Unsupervised BioFilter MeuralFiter Library | Meurahet Counfing Batch Seffings Examples Help

Training

e |C\\iu3_s\abm71_imagefmder?ﬂ\cude\bm\Dz Retraining AGENDZ JPG Change PlawiStop
Source |C\\iu}_s\abm?]_imagefmder?ﬂ\:ude\bm\De Matchinig ¥ 11 Left vs Right) ’9 Line

Analysis 4 1M (Key ws Saurce)

Matehing | Hely 1 P
| elp | Inuzee Processive | Results ¥ BN (Source ws Source)

What is This ?

3 u& ﬁ’ . |

B i

Fitered | Ovigind | Segment | Paramster | cex | F| =] 2| ®| =] <] u| B] x|
vk IZUU 30 150 |1au

Source LN 1: 1 Match

MeuralMet Filter Training

Figure 17.3 Neural Net Training & Matching.

Figure 17.3 shows the Neural Net menu item. Please implement the menu items accordingly.

17.3 NeuralNet Filter API

The following table lists the NeuralNet Filter functions.

Functions Descriptions
bool train (Bitmap img) Trains the neural
bool train (string sPath) net.

bool train (Bitmap img, int X, int y, int w, int h)
bool train (string sPath, int x, int y, int w, int h)

bool retrain (Bitmap img) Retrains the neural
bool retrain (string sPath) net.

bool retrain (Bitmap img, int X, int y, int w, int h)
bool retrain (string sPath, int x, int y, int w, int h)

Attrasoft. TransApplet70.Results_1N.Results_IN Makes a 1:1 and
findMatch11 (Bitmap imgl); 1:N Matching.
Attrasoft. TransApplet70.Results_1N.Results_1N
findMatch11 (string pathl);

Attrasoft. TransApplet70.Results_1N.Results_1N
findMatch1N (string [] fileList);

Makes a N:N

bool findMatchNN (string [] fileList, string c1File) Matching and N:M
Matching.

bool findMatchNM (string [] keyList, string [] libraryList, string
clFile);

150

17.4 Training

Training here means setting up the NeuralNet Filter. After specifying a key segment, click
“NeuralNet/Training” in Figure 17.3 to complete the training. You should see this message:

Training ...
Training End!

Double click menu item “NeuralNet/Training” and enter:

private void menultem109_Click(object sender, System.EventArgs e)

{
this.mainMenuToAPILneuralNet_Training (textBox1.Text);

}

Here, mainMenuToAPI is an object, which will implement all functions. As we discussed earlier, the
main form simply links menu items to functions in the mainMenuToAPI object. The implementation
1s:

public bool neuralNet_Training (string b)

{

if (! System.IO .File .Exists (b))

{
appendText ("Please enter a valid Key!\n");
return false;

}

intx=0,y=0,w=0,h=0;

try

{
x = int.Parse (f.textBox3.Text);
y = int.Parse (f.textBox4.Text);
w = int.Parse (f.textBox5.Text);
h = int.Parse (f.textBox6.Text);

}

catch

{
setText ("Invalid Training Segment!\n");
x =0;
y=0;
w=0;
h=0;
return false;

}

script.neuralNetFilter.train (b, x, y, w, h) ;
return true;

}

151

The following code simply makes sure the key image exists:

if (! System.IO .File .Exists (b))
{

appendText ("Please enter a valid Key!\n");

return false;

}

The next section of code computes (X, y, w, h):

intx=0,y=0,w=0,h=0;

try
{
x = int.Parse (f.textBox3.Text);
y = int.Parse (f.textBox4.Text);
w = int.Parse (f.textBox5.Text);
h = int.Parse (f.textBox6.Text);
}
catch
{
setText ("Invalid Training Segment!\n");
x =0;
y=0;
w =0;
h=0;
return false;
}

The last section of code trains the neural net:

script.neuralNetFilter.train (b, x, y, w, h) ;

17.5 1:N Matching Design

To make a 1:N Matching:

e C(Click the “Source” button to select directory, “.\input_auto_track”; then select any file in this

folder;

e C(Click “NeuralNet/Matching/1:N (Key vs Source)” to make a 1:N Matching (See Figure 17.3).

The output will look like this:

ID Name Path Score X Y
IMAGE002 IMAGE002.JPG C:\..\input_Auto_track\ 74240 204 42
IMAGEO002a IMAGE002a.JPG C:\..\input_Auto_track\ 70080 228 42
IMAGE002b IMAGE002b.JPG C:\..\input_Auto_track\ 71616 240 30
IMAGEO002¢c IMAGEO002c.JPG C:\..\input_Auto_track\ 72640 246 66
IMAGE002d IMAGE002d.JPG C:\..\input_Auto_track\ 70720 246 120

W

162
162
162
162
162

H

126
126
126
126
126

OOOOO”

152

IMAGEO002e
IMAGEO002f
IMAGE004
IMAGEO006
IMAGEO008

IMAGEO002e.JPG C:\..\input_Auto_track\ 71104 138 150 162 126 0
IMAGEOQ02£.JPG C:\..\input_Auto_track\ 108096 84 288 162 126 0
IMAGE004.JPG C:\..\input_Auto_track\ 70080 12 24 162 126 0
IMAGEO006.JPG C:\..\input_Auto_track\ 67008 378 204 162 126 0
IMAGEO008.JPG C:\..\input_Auto_track\ 67200 48 60 162 126 0

17.6 1:N Matching Implementation

Double click menu item “NeuralNet/Matching/1:N (Key vs Source)” and enter:

private void menultem116_Click(object sender, System.EventArgs e)

{
this.mainMenuToAPILneuralNet_Matching_1N

(textBox1.Text , gui.imageAbsoultePath, dataDir + "cl.txt");
}

Here, mainMenuToAPI is an object, which will implement all functions. As we discussed earlier, the
main form simply links menu items to functions in the mainMenuToAPI object. The implementation

1S:

public bool neuralNet_Matching 1IN

('string key, string [] imageAbsoultePath, string c1_txt)

{
bool b = false;

if (imageAbsoultePath == null)

{

f.richTextBox1.Text =

"Search Image Source Fail!\nPlease specify search source!\n" ;
return false;

}

try
{

script.results_IN =
script.neuralNetFilter.findMatch1N (imageAbsoultePath) ;

}

catch (Exception e)

{
appendText ("NeuralFilter 1:N Matching fails:\n"
+ e.ToString () + "\n");
return false;

}

if (script.results_1N == null)

{
appendText ("NeuralNet 1:N Matching fails!\n");
return false;

}

return true;

153

}

The following code simply makes sure search source exists:

if (imageAbsoultePath == null)

{
f.richTextBox1.Text =

"Search Image Source Fail!\nPlease specify search source!\n" ;
return false;

}

The next section of code makes a 1:N Match:

try
{

script.results_IN =
script.neuralNetFilter.findMatchIN (imageAbsoultePath) ;

}

catch (Exception e)

{
appendText ("NeuralFilter 1:N Matching fails:\n"

+ e.ToString () + "\n");
return false;

}

Remember, the neural net is already trained with the key image at this point.

17.7 Results

Although the output file specifies the segment location, it is not obviously where (x, y, w, h) is in a
given image. For example, it is not clear where (202, 42, 162, 126) is in image, image002.jpg.

154

ﬂgAttrasoft ImageFinder 7.0, http://attrasoft.com == 1[
Signature Unsupervised BioFilter MeuraFiter Library MeuralMet Counting Batch Setings Examples Help

Kev |C\\iu3_s\abm71_imagefmder?ﬂ\cude\bm\Debug\iﬂput_AulD_lrack\IMAGEDDZ JPG Chanoe Play/Stop

Source |C\\iu}_s\abm?]_imagefmder?ﬂ\:ude\bm\Debug\input_AutD_track hlode Line
Mistchine | Help | Imgs Processing |
ID: IMAGEDDZ
) Mame: IMAGEDDZ. JPG = -
? Path: C:iliud_s\abm? 1_imagefinder’ “ E’
¥ . Segment: 204 42 182 128
United Way
Score: 74240
"{;; : %,.
i B >
KN —
Fitered | Ovigind | Segment | Paramster |
vk IZUU 30 150 |1au

MeuralMet Filter: 1:N katching 4001

Figure 17.4. Matched Segment.

In Figure 17.4, the first picture box shows the training segment; and the second segment shows the
matched segment.

To see where the matching segment is, there are three buttons in Figure 17.4:
F, > (Next), and < (Previous), that can be used to show where the matched segment is:

Click the “F” button to see the first matched segment;
Click the “>” to see the next matched segment;

Click the “<” button to see the previous matched button.

Figure 17.5 shows another matched segment.

ﬂgAttrasoftImageFinder 7.0, http://attrasoft.com i =10 il
Signature Unsupervised BioFiter MeuralFiter Library Neuralet Counting Batch Settings Examples Help

Key [CHiu3_s\abm?1_imagefinder? Dicode\binDebughinput_Auto_trackIMAGEDDZ.JPG Change | Plav/Stop
Source | [Cyiu3_svabm?1_imagefinder? Dicode\binDebugyinput_Auto_track Mode Live

stscin [y | e s |
ID: IMAGEDDE

g ‘ : Name: IMAGEDOS.JPG A
Moo Path: Ciu3_s\abm71_imagefinder; @ y
. A "& ot 378 204 162 126 L e]

Score: 6701

@]
2

K i
Fitered | Ovigmal | Segnemt | Fnamzt.exl- cea | F| =] < E| =] o 8] ®|

Figure 17.5 Matched Segment.

The GUI (Graphical User Interface) Implementation is beyond the scope of this software package. The
source code for the input and output image display is given in the chapter project.

155

17.8 Another Test: Mr. Potato

Now, we want a match of the Mr. Potato trademark in Figure 17.3:

Click the “Key” button, in the “\input_auto_track” directory, select image “IMAGEQ002.jpg”;
Enter (400, 30, 150, 180) to the segment textboxes in Figure 17.2.
e C(Click the Segment button.

To train the NeuralNet Filter:

e Click “NeuralNet/training” in Figure 17.3 to complete the training.

To make a 1:N Matching:

Click the “Source” button to select directory, “\input_auto_track™; then select any file in this
folder;

Click “NeuralNet/Matching/1:N (Key vs Source)” to make a 1:N Matching (See Figure 17.3).

To see where the matching segment is, there are three buttons in Figure 17.4:
F, > (Next), and < (Previous), that can be used to show where the matched segment is:

Click the “F” button to see the first matched segment;
Click the “>” to see the next matched segment;
Click the “<” button to see the previous matched button.

Emtrasoft ImageFinder 7.0, http://attrasoft.com

(=

Signature Unsupervised BioFilter MeuraFiter Library MewuralMet Counting Batch Setings Examples Help

Kew |C Yiud_stabm?1 _imagefinder?Dicode\bimDebugiinput_Auto_track\IMAGEDDZ.JPG

Chanoe Plav/Ston
IMode Live

Source |C Wiud_stabm?1_imagefinder?licodelbin\Debugiinput_Auto_track

Matehing |Help | Tznage Frocessing |

ID: IMAGEDDZ2
)\ MName: IMAGEDDZf. JPG
S Fa\h. Cliu3_svabm71_imagefinder;
Unibad egment: 282 284 126 120
Seore: 1054068 i
= o
ek
i B>
PYR— y i
Fitesd | Ovigmal | Segmemt | Parameter | e | F| 2| <]] B e T
=yl oo 50 150 [ie0 Source LN 1: 1 Mateh

MNeuralNet Fitter: 1:N Matching 4001

Figure 17.6 Mr. Potato.

156

18. Parameters

This chapter will describe the parameters in the ImageFinder.

18.1 Overview

Attrasoft ImageFinder can:

e Match whole images;
e Match a portion of an image.

When matching a portion of an image, similar images are defined as images containing the sample
segments, or:

Translated segments;
Rotated segments;

Scaled segments;

Rotated & Scaled segments;
Brighter or Darker segments.

To match an image, the ImageFinder pushes the image through many filters. For example, a set of
filters could be:

Preprocessing Filters
Edge Filters
Threshold Filters
Clean-Up Filters
Reduction Filters
Unsupervised Filters
BioFilters
NeuralFilters
NeuralNet Filters

Many parameters and options of the ImageFinder are hidden. The users have only limited control of
the parameters. Still, the ImageFinder has many parameters, which can be adjusted by users.

The ImageFinder for Windows has 70 open parameters for the user to adjust for their particular image
type. You should get Identification Rates ranging from 60% to 89%; this is because the off-the-shelf
ImageFinder only has 70 open parameters for users to adjust. The best rate, one of our customers
(without any customization) was able to obtain, was an 89% Identification Rate.

However, the ImageFinder itself has 3000+ internal parameters, which the users have no access to at
all. Fine-tuning these 3000+ internal parameters is called customization, which is Attrasoft’s area of
expertise. If you need increased accuracy beyond what you are able to achieve when using the
ImageFinder for Windows, then customization will provide you with Your desired level of accuracy
(ranging from 95% to 99.9%).

157

If you need a customized version of the ImageFinder, please contact imagefinder @attrasoft.com .

In a typical search, you will set these parameters and leave the other parameters with default
values.

Click the “Parameter” button; you will see Figure 18.1, where you can set the parameters.

Image Preprocessing | IPP Parameters I
Image Processing |2 Sobel 2 LI IF Farameters
IT Dark Background 128 LI
[z Medium |
Normalization IReducﬂon Filter: Int, Avg LI N Parameters
Signature IS\gnatureFMlerU LI

Unsupervised Filer USF Parameters

BioFilter BF Parameters |

MeuralFilter [MeuralFitter 100 Meurans (Small) =] NF Parameters
MNeural Net INeuraI MNet 100x100 LI NT Parameters

SetEdgeFilter 2
Set ThresholdFilter 1.

SetCleanUpFilter 2 oK

Set Redeuction Filter 0: Reduction Filter: Int. Awvg |
Set SignatureFilter 0. SignatureFilter 0

SetMNeural Filter 2: NeuralFilter 100 Meurons (Small)

SetMeuralNet Filter 0: Neural Net 100x100

Figure 18.1 Parameter Window.

18.2 Image Preprocessing

@Preprocessiﬁg Parameters | il

Border Cut |.]7 (0% - 50%)

Maskooywh.tee [T o [0 fo 0
Mask Type, 0: ignore; 1: pixel value; 2 percentage value

Stick Shift |07 (0-5)

Skip Empty Border: lui

0 (Nothing); 1(Light Background); 2{Dark Background); 3(Light
percent); 4(Dark Percent); 5(Threshold Filter); B (Threshold
Filter Percent)

Skip Percent i}
Skip Threshold Filter |5 Edge i}

OK Cancel

Figure 18.2 Image Preprocessing.

158

mailto:imagefinder@attrasoft.com

Border Cut
Use the “Border Cut” parameter to cut the border areas. Enter N to the first textbox in Figure
18.2, then N% near the border will be cut off.

Mask
Use the “Mask” parameter to impose a mask on the input images. Enter (x, y, w, h, 2) to the
second row in Figure 18.2; then a mask in percent value will be imposed on the input images.
Enter (x, y, w, h, 1) to the second row in Figure 18.2; then a mask in pixel value will be
imposed on the input images.

Stick Shift
Use the “Stick Shift” parameter to speed up the computation. Set “Stick Shift” in Figure 18.2
between 0 and 5, with 0 being the slowest and 5 being the fastest.

Skip Empty Board
Skip Percent

Skip Threshold Filter
Skip Edge Filter

Use these parameters to skip the border area by cutting off N% percent of the contents.
The “Skip Empty Border” parameter in Figure 18.2 specifies the type:

No skip;

Skip the white empty border space;

Skip the black empty border space;

Skip x percent of the contents on the white background space;

Skip x percent of the contents on the black background space;

Skip empty border space on user defined Threshold Filter;

Skip x percent of the contents on user defined Threshold/Edge Filters.

NN B W= O

Use the “Skip Percent” parameter to specify the percentage of content you want to cut off for
Options 3, 4, and 6.

Options 1, 2, and 5 use the default setting, which is 2%. Use the “Skip Threshold Filter” and
“Skip Edge Filter” to set the Edge Filter and Threshold Filter, respectively.

18.3 Image Processing

159

Image Preprocessing | IPP Parameters I
7 ~
Image Processing |2 Sobel 2 LI IF Farameters
IT Dark Background 128 LI
[z Medium |
Normalization IReducﬂon Filter: Int, Avg LI N Parameters
Signature IS\gnatureFMlerU LI

Unsupervised Filt

USF Parameters

BioFilter BF Parameters

NeuralFifer INeuraIFlltermD Meurons (Small) LI MNF Parameters
Negfal Ret INeuraI MNet 100x100 LI NT Parameters
SetEdgeFilter 2
Set ThresholdFilter 1.
SetCleanUpFilter 2 oK
Set Redeuction Filter 0: Reduction Filter: Int. Awvg |

Set SignatureFilter 0. SignatureFilter 0
SetMNeural Filter 2: NeuralFilter 100 Meurons (Small)
SetMeuralNet Filter 0: Neural Net 100x100

Figure 18.3 Image Processing.

18.3.1 Edge Filters

Edge Filters extract and enhance edges & contours in an image by expressing intensity differences
(gradients) between neighboring pixels as an intensity value. The basic variables are the differences
between the top and bottom rows, the differences between the left and right columns, and the
differences between the center point and its neighbors.

Edge Filters have the following selections:

Q
=
<%
(¢4

Meaning

No Edge Filter
Sobel 1 (Prewitt)
Sobel 2 (Sobel)
Sobel 3

Sobel 4
Gradient
Gradient, 45°
Sobel 1, 45°
Sobel 1, - 45°
Laplacian 4
CD 11

FD 11

FD 9

FD 7

FD 13
Laplacian 5
Laplacian 8
Laplacian 9

O 00NN Hs W~ O

[e T e Y S G Sy SRy SN
NN DR W = O

160

18 Laplacian 16
19 Laplacian 17

All other filters have to be ordered in a Customized Version.
These names really do not make any sense to common users; the best way to figure out what these

filters are, is to select a training image and try each of the filters. In general, these filters require the
“Dark Background 128" Threshold Filter.

If you do not want to know the details, please skip the rest of this section.

The details will be given below so you will know how to order a customized filter:

Sobel 1:

-1 01 -1 -1 -1

-101 00O

-1 01 1 11
Sobel 2:

-101 -1 -2 -1

20 00

-101 1 21
Sobel 3:

-1 01 -1 -3 -1

303 00O

-1 01 1 31
Sobel 4:

-101 -1 4 -1

-4 0 000

-101 1 41
Gradient:

000 0-10

-1 01 000

000 010
Gradient, 45°

001 -100

000 000

-100 0 01
Sobel 1, 45°

01 110

-10 1 0 -1

-1-10 0-1-1
Sobel 2, 45°

012 210

161

=]
1
—

Laplacian 4

Laplacian 5

Laplacian 8

Laplacian 9

Laplacian 16

Laplacian 17

18.3.2 Threshold Filters

After Edge Filters, the Threshold Filter will be applied to the images. Choose these two filters where
the sample objects stand out, otherwise change the filters.

If no filter in this version fits your problem, a Customized Filter has to be built. DO NOT make too
many things stand out, i.e. as long as the area of interest stands out, the rest should show as little as
possible.

162

Once you make a selection, the objects in the images are black and the background is white (like a
book: white paper, black print). You should make the black area as small as possible, as long as it
covers the key-segment(s). Otherwise, switch to a different background.

™ Threshold Filter Parameter (=] 3|

Colar [0, 254] [1. 258] [0.2]

Jo EE B

Jo [128 B

Blue Jo [128 B

oK | Cancel |

0: Light Background . 1: Dark Backgrouned, 2: lgnare this calor

Y

Figure 18.4 Threshold Filter Parameters.

There are 30 Threshold filters in the ImageFinder.

A few filters, including the average-filter and the customized-filter, allow you to specify any color
range. Color is specified by three separate colors: Color = (red, green, blue). Each of the colors ranges

from O to 255. (0, 0, 0) is black; (255, 255, 255) is white.

You should choose a filter where the sample object(s) stand out. You may want to know the
meaning of the filters; example, "Light Background 128" means:

“RGB Average in 0 — 127 “ =» objects; and
“RGB Average in 128 - 255 =» background.

To Summarize:

e Choose an Edge Filter and a Threshold Filter where the sample object(s) stand out;
e Choose an Edge Filter and a Threshold Filter where the black area is as small as possible,
as long as it covers the key-segment(s).

18.3.3 Clean-Up Filters

Clean-Up Filters will clear noise off the image, but it will take more computation time.

18.4 Normalization Filter

The Normalization Filter connects the image to the underlying neural nets.

Let the underlying neural net be 100x100: if an image is larger than 100x100, say 350x230, then this
image will be reduced to 100x100 or smaller.

163

When reducing images, a scaling factor can be introduced easily. Although scaling symmetry can
compensate for this scaling factor, scaling symmetry is computationally expensive.

It is important to know that the Reduction Filter will match the selected underlying neural net,
therefore, the behavior of the Reduction Filter not only depends on the selection of this filter itself, but
also depends on the NeuralNet Filter chosen.

Reduction Filter Parameter %]
Segment Cut In Size Cut ID
Border Cut |u

Look At Area |D |[| I[l IEI

Figure 18.5 Selecting Reduction Filter.

There are several ways to reduce images:
e Integer,
e Real, or
e All images are reduced by the same amount.

Integer Reduction
Images are reduced by an integer factor to maximally fit 100x100 without distortion. For
example, a 350x230 image will be reduced to 87x57.

Real Reduction
Images are reduced by a real number to maximally fit 100x100 without distortion. For example,
a 350x230 image will be reduced to 100x65.

Within each type of reduction, there are 3 more settings. Assume a 3x3 pixel array is reduced to 1
pixel,

e Avg: Assign the average of the 3x3 pixel array to the new pixel;

e Max: Assign the maximum of the 3x3 pixel array to the new pixel; or

e Min: Assign the minimum of the 3x3 pixel array to the new pixel.

To select the Reduction Filter, use the fourth drop down list. The Reduction Filter has seven
parameters.

Segment Cut
This parameter deals with the edges of the segments in the images. The Segment Cut parameter
ranges from O to 12. The larger this parameter is, the smaller the segment the ImageFinder will
use. The possible settings in the user interface are: 0, 1, 2, .., and 12.

164

Size Cut
In some applications, the users only want to search images of certain dimensions and ignore other
images. An example is given below:

In this example, the two stamps belong to two different classes based on the image dimension
alone.

The Size Cut parameter ranges from 0 to 9. If the setting is 0, this parameter will be ignored.
e If the parameter is 1, then the longest edge of the image to be considered must be at
least 100, but less than 199.
e If the parameter is 2, then the longest edge of the image to be considered must be at
least 200, but less than 299; ...

Border Cut
The Border Cut parameter ranges from O (no cut) to 9 (18% border cut). For some images (see
the picture below), you might want to get rid of the sections of images close to the borders. To
get rid of the border section, use the Border Cut.

The possible settings in the user interface are: 0, 1, 2, .., and 9.
Assume an image is (0,0; 1,1),
e setting Border Cut to 1 means the ImageFinder will look at the section (0.02, 0.02;
0.98, 0.98);
e setting Border Cut to 2 means the ImageFinder will look at the section (0.04, 0.04;
0.96, 0.96);

165

Look-At Area
The Look-At Area is the area the ImageFinder will use in a matching operation. A 100 x 100

window specifies a whole image. If an integer Reduction Filter is used, the actual area can be
less than 100x100.

Four numbers specify the Look-At Area:
(x,y, w, h)

(x, y) are the coordinates of the upper-left corner and (w, h) are the width and height of the
Look-At window.

To use this Look-At window, enter (X, y, w, h) to the 4 text boxes.

18.5 Unsupervised Filter & BioFilter

The Unsupervised Filter and the BioFilter have similar parameters, so we have combined these two
filters together.

Unsupervised Filter Parameter — |EI |i|
Fault Tolerance Scale 20 0+to0100; 100 for more output
Blurring 2 0-100. larger for more output
Sensitivity |4 0-100. lager for more output
Threshold Ig 0 - any nurmber
Relafive Score IU 0: Absolute; 1: Relative
Show File |1 1: Show File; 0: Mo Show
coce_|
4

Figure 18.6 Unsupervised Filter or BioFilter Parameter.

Fault Tolerance Scale
Use this parameter to control the amount of output. This parameter ranges from 0 to 100. The

larger this number is, the more matches you will get. To set this parameter, enter a number between
0 and 100 to the text box.

Blurring
Use this parameter to control the amount of output. This parameter ranges from 0 to 100. The

larger this number is, the more matches you will get. To set this parameter, enter a number between
0 and 100 to the text box.

Sensitivity

166

Use this parameter to control the amount of output. This parameter ranges from 0 to 100. The
larger this number is, the more matches you will get. To set this parameter, enter a number between

0 and 100 to the text box.

Threshold
The result of image comparison is a "score", indicating the degree to which a match exists. This

score is then compared to a pre-set Threshold to determine whether or not to declare a match. This
parameter sets the threshold. To decide what threshold to use, you should make a test run first and
look at the scores. Matching images have higher scores; unmatched images have lower scores.
Select a threshold to separate these two groups. There will be a few images in the middle,
representing both groups. Under these circumstances, the threshold selection depends on your

application.

Relative Score
Use the relative score to set the range of matching score between 0 and 100.

Show File
This parameter is set to 1 by default, which will show the output file. If this parameter is set to 0,

then output file will not be shown.

18.6 Neural Filters
=lo x|

Fault Tolerance Scale: lzn— 0+to 100; 100 far more output
Blurring |2— 0-100, larger for more output
Openning lz— Larger opening, mare output
Sensitivity |4— 0-100, lager for maore outaut
Threshold IU— 0 - any numkber

Felative Score lu— 0: Absolute; 1: Relative
Show File [1:ShowFie: 0:No Show

Figure 18.7 NeuralFilter Parameter.

Fault Tolerance Scale
Use this parameter to control the amount of output. This parameter ranges from 0 to 100. The

larger this number is, the more matches you will get. To set this parameter, enter a number between
0 and 100 to the text box.

Blurring

167

Use this parameter to control the amount of output. This parameter ranges from 0 to 100. The
larger this number is, the more matches you will get. To set this parameter, enter a number between
0 and 100 to the text box.

Sensitivity
Use this parameter to control the amount of output. This parameter ranges from 0 to 100. The
larger this number is, the more matches you will get. To set this parameter, enter a number between
0 and 100 to the text box.

Threshold

The result of image comparison is a "score", indicating the degree to which a match exists. This
score is then compared to a pre-set Threshold to determine whether or not to declare a match. This
parameter sets the threshold. To decide what threshold to use, you should make a test run first and
look at the scores. Matching images have higher scores; unmatched images have lower scores.
Select a threshold to separate these two groups. There will be a few images in the middle,
representing both groups. Under these circumstances, the threshold selection depends on your
application.

Relative Score
Use the relative score to set the range of matching scores between 0 and 100.

Neural Filter Opening
This parameter controls the amount of output. This parameter has 5 settings:
Very Large
Large
Normal
Small
Very Small
Large openings will allow more output than small openings. To set the parameter, keep clicking
the button; the setting will switch from one to the next each time you click the Blurring button.

Show File
This parameter is set to 1 by default, which will show the output file. If this parameter is set to 0,
then output file will not be shown.

18.7 NeuralNet Filter

168

_iolx
Syrnmetry | lﬂ— Bilurring (0.50) lm—
Translate Type | IU— Sensitivity (0,100) |5g—

Scaling Type | lui Internal Cut (0,100} 100
Fiotation Type | lni External Cut Ini
key (x v w hi: lﬂi Segment Size | IDi
lﬂi Image Tvpe | l]i
lﬂi Auto Segment | lﬂi
ID— Use BioFilter | ID—
Use MeuralFilter | ID—
QK | Cancel |
4

Figure 18.8 Neural Net Parameter.

The available NeuralNet filters are:

100x100 (Most Accurate)
90x90

80x80

70x70

60x60

50x50 (Least Accurate)

Let the speed of a 100x100 filter be a base, then the overall speed for:

90x90 filter is 1 times faster;
80x80 filter is 1.6 times faster;
70x70 filter is 2.7 times faster;
60x60 filter is 5 times faster; and
50x50 filter is 10 times faster.

The NeuralNet Filter has many parameters. The following sections will explain these parameters.

18.7.1 Symmetry
Symmetry or Invariance means similarity under certain types of changes. For example, considering

two images, one with a face in the middle and the other with the face moved to the edge; we say these
two images are similar because of the face.

The symmetry defines "similar images". The Attrasoft ImageFinder supports five symmetry settings:

169

No symmetry (0);

Translation symmetry (3);

Scaling symmetry (4);

Rotation symmetry (5); and
Rotation & Scaling symmetries (6).

The numbers are the codes in the batch file. Currently, Scaling symmetry and Oblique symmetry are
the same.

Other symmetries, or combination of symmetries, can be built for Customized Orders.

A customized Attrasoft ImageFinder can implement any symmetry (or combination of
symmetries), which can be described by mathematics.

However, symmetries are computationally expensive.

Every symmetry setting has the Translation symmetry, except "No Symmetry". In addition, each of
the above settings support:

e Intensity symmetry.

Symmetries are computationally expensive, meaning it will take a longer time to do the job. You
should use them only when they are required.

To set the Symmetry, keep clicking the “Symmetry” button; the setting will switch from one to the
next each time you click the button. The default setting in this version is Translation Symmetry.

For example, it seems that Stamp Recognition requires Translation and Rotation symmetries. But
because the edges of a stamp can be detected easily, the stamp can be rotated and shifted to a fixed
position where the horizontal side is longer than the vertical side. All you need to do is recognize a

stamp or an upside-down stamp. Therefore, Stamp Recognition does not really require Translation and
Rotation symmetries.

18.7.2 Translation Type

The Translation Type defines the accuracy of the Translation symmetry.
The Translation Type settings (and their codes) are:

e Most Accurate (0);
e Accurate (1); and
e Least Accurate (2).

To set the Translation Type, keep clicking the “T Type” button; the setting will switch from one to the
next each time you click the button. The default setting is 0, the most accurate setting.

170

18.7.3 Scaling Type

The Scaling Type defines the accuracy of the Scaling symmetry.
The Scaling Type settings (and their codes) are:

Least Accurate (0);
Accurate (1);
Accurate (2); and
Most Accurate (3).

To set the Scaling Type, keep clicking the “T Type” button; the setting will switch from one to the next
each time you click the button. The default setting is 0, the least accurate setting.

18.7.4 Rotation Type

The Rotation Type defines the accuracy of the Rotation symmetry.
The Rotation Type settings (and their codes) are:

360° rotation, least accurate (0);
-5° to 5° rotation (1);

-10° to 10° rotation (2);

360° rotation, accurate (3);

360° rotation, more accurate (4);
360° rotation, most accurate (5).

To set the Rotation Type, keep clicking the “Rotation Type” button; the setting will switch from one to
the next each time you click the button. The default setting is 360° rotation, the least accurate setting

0).

18.7.5 Area of Interest (AOI)

Selecting an image segment is very important for training.

e Use image segments for searching similar images.
e Only use the whole image for exact matches.

Training requires an "Area of Interest" (AOI) or "Set Focus", which selects a key-segment. If an AOI
is not chosen, the whole image is the AOIL Four numbers specify AOI: the upper-left corner
coordinates, and the length & width. Once the segment specification is successful, a box will cover the
selected area. When you look at the training image, if the selected area is not what you want, just re-
select the area again and click the “Segment” button.

171

The default setting is the whole image; the code is (x y w h) = (0 0 0 0). (0000) means ignore the
segment. The units are pixels.

There are two situations where you should create a new sample image out of a sample segment:

e You repeatedly use an image segment;
e The image segment is not a rectangle; say a polygon.

The Windows Paint program will help you to create an image from a segment. When you create an
image segment, please do not change the original image size. For example, if your image is 512x512
and you want create a segment of 400x200, please paste the 400x200 segment into a 512x512 empty
image.

18.7.6 Blurring

This is one of the most important search parameters and the first parameter you should adjust.

Blurring compensates for minor image changes, which are not visible to human eyes. For example, if
you use software to compress an image, to change the intensity of an image, or to translate, scale, or
rotate an image, the image will be distorted a bit at the pixel level. You have to set “Blurring” to
compensate for this.

The Blurring setting ranges from 0 to 50. The default setting is 10. You should set the parameters in
the following order:

Blurring, Internal Weight Cut, Sensitivity, External Weight Cut.

To Summarize:
e When a search yields no results, increase Blurring;
e When a search yields too many results, decrease Blurring.

18.7.7 Sensitivity

The Sensitivity parameter ranges from O (least sensitive) to 100 (most sensitive).
e To search small segment(s), use high sensitivity search.
e To search large segment(s), use low sensitivity search.
e The higher this parameter is, the more results you will get.

The Sensitivity parameter ranges from 0 to 100. The default is 50.
To Summarize:

e When a search yields no results, increase sensitivity;
¢ When a search yields too much result, decrease sensitivity.

172

18.7.8 Internal/External Weight Cut

You can set the "Internal Weight Cut" (Internal Cut) or "External Weight Cut" (External Cut) to list
only those retrieved images with scores or weights greater than a certain value (called Threshold).

It is better to give no answer than a wrong answer.

Assume you are searching images and all similar images have weights ranging from 1,000 to 10,000. It
is possible that some other images pop up with weights ranging from 10 to 100. To eliminate these
images, you can set the “External Weight Cut” to 1,000.

The Internal Cut plays a similar role as the External Cut. There are two differences between these two
cuts:

e The Internal Cut ranges from 0 to 99; the External Cut can be any number;

e The Internal Cut stops the images from coming out, whereas the External Cut can bring the
eliminated images back if you set the External Cut to 0. You might need to see the eliminated
images sometimes for the purpose of adjusting the parameters.

To Summarize:

e Set the “Internal Cut” or “External Cut” to eliminate errors.

18.7.9 Segment Size

The ImageFinder is currently tuned to search for large image segments (size of the whole image). It
can look for small segments via the "Small Segment" setting; however, only Translation symmetry is
supported for small segments.

A Customized Version can be ordered for other symmetries.

To search large segments, use setting 0.
To search small segments, use setting 1.

For example:
e If a sample segment is one quarter of the sample image, it is a large segment.
e If the segment is 1/20 of the sample image, it is a small segment.

Currently, 'S Segment' only supports Translation symmetry. If vou need Rotation or/and
Scaling symmetry, please use ''L Segment''.

Other symmetries can be added in a Customized Version.

18.7.10 Image Type

There are BW and Color images. For each of them, there are “sum-search”, “maximum-search”, and
“average-search”. This generates 6 image types:

173

BW Sum
BW Max
BW Avg
Color Sum
Color Max
Color Avg

"BW Sum” is like an integration of function f (x).

"BW Max” is like a maximum value of f (x); and

"BW Avg” is the average of the above two.

"Color Sum” is like an integration of function f (x).

"Color Max” is like a maximum value of f (x); and

"Color Avg” is the average of the above two.

To set the image type, keep clicking the Image Type button; the setting will switch from one to the
next each time you click the Image Type button.

18.7.11 Use BioFilter & Use Neural Filter

These two parameters, “Use BioFilter” and “Use NeuralFilter” will decide whether the BioFilter and
NeuralFilter will be used before the NeuralNet Filter is used to eliminate some images.

18.7.12 Auto Segment

The training segment can be specified in two ways:

Manual Specification
Automatic Specification

The default is Manual Specification. In this setting the segment will be specified by the four text boxes
(X, y, w, h), as we discussed earlier.

If you do not want to pick up a training segment, then let the ImageFinder pick up the segment for
you by using the Automatic Specification. This parameter has several settings:

NO Auto Segment
Very Large Segment
Very Large Segment
Large Segment
Large Segment
Medium Segment
Medium Segment

174

18.7.13 Summary

The NeuralNet Filter is hard to use because it has so many parameters. Not all parameters are equal.
We divide the parameters into two groups. The beginners should use only parameters in the first group.
Note that:

¢ The most important parameters for Training are Image Processing, AOI, Symmetry, and
Segment Cut (in the Reduction Filter).
e The most important parameters for Matching are Blurring, and Sensitivity.

In a typical search, you will set these parameters and leave other parameters with default values. These
are the 7 parameters you should focus on first:

Training (3 parameters):
e Segment: selecting “Large AutoSeg 3” so the ImageFinder will select a training segment for
you at the beginning.
e Symmetries
e Segment Cut (in the Reduction Filter)

Matching (4 parameters):
e Sensitivity

Blurring

External Weight Cut

Internal Weight Cut

Ignore the rest of the parameters at the beginning.

175

19. Input Options

The chapter project is located at:
c:\transapplet70\imagefinder\.
The executable file is located at:
c:\transapplet70\imagefinder\bin\Release\.
We also call this folder “.\”. That is, “.\” is “c:\transapplet70\imagefinder\bin\Release\”. When you

start the software, the first thing you will see is Figure 19.1. ImageFinder requires a key image and a
search source. Now, we will introduce a few input options, including:

e Microsoft Access,
e Avi video file, and
e Live video.

This chapter will introduce the input design for Microsoft Access, avi video file, and live video; and
the next three chapters will introduce the implementation.

[select Input Mode . I =]

Select Input Mode

—Input Mode
¢ (1. Search Directary 4 Access [*mdb)
i~ 1. Search File i B Access Segment
" 2. Subrdirectories . *avi files
= 3. File Segment " 7. Live Viden [Camera Required)

‘r'ou can change Mode later via the Mode button!

ok | Cancel |

Figure 19.1 Input options.

The default search source is directory input, i.e. the ImageFinder will search through the images in a
directory. The ImageFinder also will support a number of other options. See Figure 19.1.

19.1 File Input

You can specify the search source with a file. The Input Files must list one image per line. Each line
specifies an absolute path. For example,

C:\xyz1\0001.jpg
176

C:\xyz1\0002.jpg
C:\xyz2\0003.jpg
C:\xyz2\0004.jpg

The only difference between the Directory Input and the File Input is how images are entered into the

ImageFinder; after that, all other steps are the same.

You can specify File Input either in Figure 19.1, or in Figure 19.2.

e In Figure 19.1, select the second option for File Input.

e In Figure 19.2, keep clicking the “Mode” button and the setting will switch from one to the

next.

ﬂgAttrasoft ImageFinder 7.0, http://attrasoft.com == 1[
Signature Unsupervised BioFilter MeuraFiter Library MeuralMet Counting Batch Setings Examples Help
Key I IC\ick Key button 1o select a key image! Change Play/Stop
Source |C\ick Mode to select an input type. then Source to select a source Made Live
Matelring |Help | Trmage Processing |
Ready!
Click the Mode button
< to select an input type:
Please: Directary,
: . File,

Click Key Button; Sub Directory,
File Segment,

Select an Image. e,
Access Segment,
*.avi file, and

The key will be Leveyuteo.

1 | Click Source button to
displayed here! s i
Fitered | Ovigind | Segment | Paramster | cex | F| =] 2| ®| =] <] u| B] x|
G |u o o |u Source 1:¥ 1:1 Match

Status

Figure 19.2 Input Mode Button.

177

ﬂgAttrasoft ImageFinder 7.0, http://attrasoft.com == 1[
Signature Unsupervised BioFilter MeuraFiter Library MeuralMet Counting Batch Setings Examples Help

Kev |C\ick Key button to select a key image! Chanoe Play/Stop
Source |C\\iu}_s\abm?]_imagefmder?ﬂ\:ude\bm\Debug\input_me\mput_hleW et hlode Line

Matching |Help | Trusge Processing |

ID: Z0B7(1)
Mame: 2067(1).jog
Path: C:iliud_s\abm? 1_imagefinder’

Please: Segment 0000
Click Key Button;
Select an Image.

The key will be
displayed here!

Fitered | Owigind | Segment | Paramster | cear || [F]
xpwh Iu o 0 Iu

Status

J_l_lﬂﬂﬂ

Figure 19.3 File Input example.
Example. File Input

Start the software;

Select option, “Search File”;

Click the “Source” button, and select file, “.\input_file\input_filel.txt”;

Click the “F” button in Figure 19.3 to see the first image, and click the *“>” button to see the
next image.

19.2 Sub-Directory Input

The default search source is Directory Input only. If the directory has sub-directories, the
ImageFinder will not search through the sub-directories.

To search through the sub-directories, use the Sub-directory Input option.

You can specify sub-directory source either in Figure 19.1, or in Figure 19.2.

e In Figure 19.1, select the third option for File Input.
e In Figure 19.2, keep clicking the Mode button and the setting will switch from one to the next.

Example. Sub-Directory Input:

Start the software;

Select option, “Sub-directory”;

Click the Source Button, and select file, “.\input_subdir\1001A.jpg”;

Click the “F” button in Figure 19.3 to see the first image, and click the “>” button to see the
next image.

178

19.3 Segment File Input

The first three options are for whole images.
If you want compute the signature for a segment of an image, you have to select File Segment Input.

The Input Files must list one image per line. Each line specifies an absolute path, Image_ID, X, y, w,
and h. A sample segment file looks like this:

\2067(1).jpg 1 20 20 280 200
\2067(2).jpg 2 20 20 280 200
\2067(3).jpg 3 20 20 280 200
\2067(4).jpg 4 20 20 280 200
\2071(1).jpg 5 20 20 280 200
\2071(2).jpg 6 20 20 280 200
\2071(3).jpg 7 20 20 280 200

Here (x, y, w, h) are in the unit of pixels. You can specify File Segment source either in Figure 19.1, or
in Figure 19.2:

e In Figure 19.1, select the “File Segment”.
e In Figure 19.2, keep clicking the “Mode” button and the setting will switch from one to the
next.

Example. File Segment Input:

Start the software;

Select Option, “File Segment”;

Click the “Source” button, and select file, “.\input_file\input_filesegment].txt”;

Click the “F” button in Figure 19.3 to see the first image, and click the “>” button to see the
next image.

e The segment is marked by a box in Figure 19.4.

179

ﬂgAttrasoft ImageFinder 7.0, http://attrasoft.com

=lofx|

Signature Unsupervised BioFilter MeuraFiter Library MeuralMet Counting Batch Setings Examples Help

Source |C\\iu3_5\abm71_imagefmder?ﬂ\:ude\bm\Debug\input_me\mput_hlesegmenn ot

Kev |C\ick Key button to select a key image!

Matching |Help | Trusge Processing |

Please:

Click Key Button;
Select an Image.

The key will be

displayed here!

Fitered | Owiginad |

Path: C:iliud_s\abm? 1_imagefinder’
Segment: 20 20 280 200

Segment | Paramster |

e 1 0 = i s i

o b b F b

Change Plaw/Ston
F Segment Line

1: 1 Match

Status

Figure 19.4 File Segment.

19.4 Database Input, Whole Image

The only database supported in this version is Microsoft Access. If you need a different Database

supported, customization will solve this problem.

The Database consists of a set of tables. The table contains the locations of the images.

The data in a table is obtained by a SQL statement; therefore, to use this option, you must be able to
write a SQL statement. The SQL output must list one image per row. When all fields in each row are

combined, it must specify an absolute path.

A sample access table is:

Name

/12067(1).jpg

112067(2).jpg

/12067(3).jpg

|.//2067(4).jpg

112071(1).jpg

/12071(3).jpg

//2071(4).jpg

/12082(1).jpg

1)
2 (2)
3 (3)
4 (4)
S (1)
61.//2071(2).jog
7 (3)
8 (4)
9 (1)
0 ()

/12082(2).jpg

Some sample SQL statements are:

180

select Path, Name from List1
select Name from List2

Do not add the semicolon, “;” at the end of the SQL statement!

The result of a query must produce a list of paths for images. The result is either a single column or
two columns, like path and name, which forms an absolute path when combined together.

Example. Database Input:

Start the software;

Select the option, “Access”;

Click the “Source” button, and select file, “.\input_access\dbl.mdb”;

Enter the SQL statement, “Select Name from List2”;

Click the “F” button in Figure 19.3 to see the first image, and click the “>” button to see the
next image.

19.5 Database Input, Inage Segment

The only database supported in this version is Microsoft Access. If you need a different Database
supported, customization will solve this problem.

The Database consists of a set of tables. The table contains the locations of the images segments. Six
fields specify the image segments: path, ID, X, y, w, and h. Database retrieval is specified by a query.
For example, “Select Path, ID, x, y, w, h from List3”. Do not add *;” at the end of the SQL
statement!

The result of a query must produce a list of (Path, ID, x, y, w, h). No other formats are accepted!
Example. Database Segment Input:

Start the software;

Select the Option, “Access Segment”;

Click the “Source” button, and select file, “.\input_access\dbl.mdb”;

Enter the SQL statement, “Select Path, ID, x, y, w, h from List3”;

Click the “F” button in Figure 19.3 to see the first image, and click the “>” button to see the
next image.

19.6 Converting AVI Video to Images

The only video format supported in this version is *.avi. If you need a different video format
supported, customization will solve this problem.

After selecting an *.avi file, the ImageFinder will convert the avi video file to a set of images. After
that, they are the same as the rest of the images.

181

Example. Converting AVI Video:

ﬂgAttrasoft ImageFinder 7.0, http://attrasoft.com =10 il
Signature Unsupervised BioFilter MeuralFiter Library MeuralMet Counfing Batch Settings Examples Help
Kew |C\|ck Key button to select a key image! Chance Flav/Ston

Miatching | Halp | Tmags Procsssing |

Source |\mput,ﬁ\n\.:\nck ai / Viden File Live

Please:
Click Key Button;
Select an Image.

The key will be
displayed here!

Start the software;

Select the option, “*.avi File”;

Click the “Source” button, and select file, “.\input_avi\clock.avi”;

Click the “Play/Stop” button in Figure 19.5 to convert the button to a “Play” button;
Click the “Play” button to Play, which also converts the button to a “Stop” button;
Click the “Stop” button to stop the video;

Click the “Change” button in Figure 19.5 to get Figure 19.6;

Click the “*.avi to Images” button to convert the avi file to images.

| o | [| | | B EE EE B
xywrh |n o o |n

Source 1:H 1: 1 Match

Figure 19.5 Converting AVI Video File to Images, Step 1.

™ video /Live Parameters _ o x|
Flay Speed (1000=1sec) |1[|[|
ideosLive Output Folder |C:\hu375\abm?17imagefinder?D\:Dde\bin\Debug\lemp\

Al Video Starting Frame Number, Ending Frame Numnber, Steps:

Jo Jio i
Avi Video Mumber of frames |12
Mumber of Frame to capture live: |1g

Live Capture Interval (1000=1sc8) |1 0ao

*avito Images
Live to Images
0K

4

Figure 19.6 Converting AVI Video File to Images, Step 2.

182

19.7 Converting Live Video to Images

You will need a Logitech camera for this section.

After starting the camera live, the ImageFinder will convert the live video file to a set of images.
After that, they are the same as the rest of the images.

Attrasoft ImageFinder 7.0, http://attrasoft.com = |l il
Signature Unsupervised BioFilter MeuraFitter Library MeuralMet Counting Batch Setings Examples Help

Key |C\i|:|< Key button o select a key image! Change Plaw/Stop
Source I |L\ve\/iden startin ther Panel —IMD"19

Matching |Help | Truzge Prozescing |

Live Video start in the small window!
To start live video in the large windc Click the Mode button

P|EaSB clicLive buttan! ;t;::iz::;:n input type:
Click Key Button; e isecny:
File Se; nt,
Select an Image. e
Access Segment,
. ".aviﬁl.e,am‘l
The key will be Live viilco:
displayed here! CAEL Pmrcs ihioe o
dl — 5
Filtered | Ovigind | Segmemt | Paramster cex | F| »| 2| E| =] <] u| 8] x|
it |u o o |u . Source 1:¥ 1:1 Match
| e T

Status

Figure 19.7 Converting Live Video File to Images, before clicking the “Live” button.

Attrasoft ImageFinder 7.0, http://attrasoft.com] ==l il
Signature Ursupervised BioFilter MeuraFitter Library MeuradMet Counting Batch Setfings Examples Help

Kew |C\||:I< Key hutton to select a key image! Change Plaw/Stop
Source |L\ve “iden startin ther Panel

Wit |1-121P | Tmage Processing |

sy

Live Start, click the same button to ¢ nl-,age & Vid@O Recognm
Software Solutior

Please:
Click Key Button;
Select an Image.

The key will be
displayed here!

Fiteed | wigmal | Segwemt | Parameter |

o b F F B

Semree 1:H 1: 1 Match

Status

Figure 19.8 Converting Live Video File to Images, after clicking the “Live” button.

Example. Converting Live Video:
e Start the software;

183

Select the option, “Live Video™;

Click the “Source” button to get Figure 19.7, where live video is shown on a small window on
Figure 19.7;

Click the “Live” button on 19.7 to get Figure 19.8.

Click the “Change” button in Figure 19.7 to get Figure 19.8;

Click the “Live to Images” button in get Figure 19.6 to convert the Live Video to images;

Click the “Live Stop” button in Figure 19.8 to stop.

184

20. Database Input

In this chapter, we introduce Microsoft Access Input. Other DBMS (Database Management System)

can be ordered via a customized TransApplet.
The database input requires:

Database File;

SQL statement, which specifies how the data is obtained from the database.

There are two options you can use to implement the Access Input:

Attrasoft. TransApplet70. InputDBMS70;
Attrasoft. TransApplet70. Input70.

The chapter project is located at:
c:\transapplet70\imagefinder\.
The executable file is located at:

c:\transapplet70\imagefinder\bin\Release\.

20.1 Basic Access Class

The Class Library is:

Attrasoft. TransApplet70.InputDBMS70,
The class in this library will be:

Attrasoft. TransApplet70. InputDBMS70. InputDBMS70.
The interface, which will be used by InputDBMS70, is:

public interface I_InputDBMS

{
bool setDBMS (string dbms, string query);

bool setDBMSSegment (string dbms, string query);

string getDBMS ();
string getQuery ();

bool isDBMSFile (string s);

185

bool getStatus();

int getN();

string [] getID ();
string [] getName ();
string [] getPath ();
string [] getAbsolutePath ();
string [] getX ();

string [] getY ();

string [] getW ();

string [] getH ();

string getMessage();

}

This Database Input Class will have a constructor that will take a RichTextBox:

public InputDBMS70(RichTextBox rl)

{
}

To declare an object, write:
public Attrasoft. TransApplet70.InputDBMS70.InputDBMS70 indb70 ;
To create an object, write:

indb70 = new
Attrasoft. TransApplet70.InputDBMS70.InputDBMS70 (richTextBox1);

The Input parameters to this class are:

e Database File;
¢ SQL statement that specifies how the data is obtained from the database.

The Output of this class is a string list of images. The first thing you will do is to enter information to
this class:

indb70.setDBMS (sDBMS, sQuery);
At this point, you can proceed to get data:

int getN();

string [] getID ();

string [] getName ();

string [] getPath ();

string [] getAbsolutePath ();

186

string [
string [
string [
string [

getX ();
getY ();
getW ();
getH ();

e e e

The status function will tell you whether the database computation is successful:
indb70.getInputDBMSStatus ()
If it is successful, the retrieved image list can be obtained:

if (! indb70.getInputDBMSStatus ())

{
appendText ("Database input Fail!\n");

return;

}
filelist = indb70. getAbsolutePath ();

20.2 Input Class

An alternation is to use Input70 class introduced earlier.
The class library is:
Attrasoft. TransApplet70.Input70.
The main class in this library will be:
Attrasoft. TransApplet70.Input70.Input70.
The Input70 interface is:
public interface I_Input
{ string [] getDirList (string sInput);

string [] getSubDirList (string sInput);

string [] getFileList (string sInput);
string [] getFileSegmentList (string sInput);

string [] getAccessList (string sInput, string sSQL);
string [] getAccessSegmentList (string sInput, string sSQL);

string [] getID ();

string [] getName ();
string [] getPath ();

187

string [] getAbsolutePath ();

|
string [] getX ();
string [] getY ();
string [] getW ();
string [] getH ();

The functions in Input70 class are listed in the following table.

Function

Description

string [] getDirList (string sInput)

Gets a string list of the absolute paths of all
images in directory, sInput.

string [] getSubDirList (string sInput)

Gets a string list of the absolute paths of all
images in all sub-directories of sInput.

string [] getFileList (string sInput)

Gets a string list of the absolute paths of all
images in file, sInput.

string [] getFileSegmentList
('string sInput)

Gets a string lists of the absolute paths of
all images in file, sInput. This command
will also populate other arrays so they can
be obtained through the following
functions:

string [] getID ();

string [] getName ();

string [] getPath ();

string [] getAbsolutePath ();

string [] getX ();

string [] getY ();

string [] getW ();

string [] getH ().

string [] getAccessList
('string sInput, string sSQL)

Gets a string list of the absolute paths of all
images in access file, sInput, specified by a
SQL statement, sSQL.

string [] getAccessSegmentList
('string sInput, string sSQL)

Gets a string list of the absolute paths of all
images in access file, sInput, specified by a
SQL statement, sSSQL. This command will
also populate other arrays so they can be
obtained through the following functions:

string [] getID ();

string [] getName ();

string [] getPath ();

string [] getAbsolutePath ();

string [] getX ();

string [] getY ();

string [] getW ();

string [] getH ().

188

string [
string [
string [
string [
string [
string [
string [
string [

getID () Gets a string list of the ID, Name, Path,
getName () Absolute Path, X, Y, W, and H of all
getPath () images in a search source.
getAbsolutePath ()
getX ()

getY ()

getW ()

getH ()

e e e e e e e e

20.3 Input Selection

The input options are:

0. Directory,

1. File,

2. Sub-Directory,
3. File Segment,

4. Access,

5. Access Segment,
6. *.avi file, and

7. Live Video.

The selection is implemented by the “Mode” button in Figure 19.2:

e In Figure 19.1, select an input option.
e In Figure 19.2, keep clicking the Mode button and the setting will switch from one to the next.

Double click the “Mode” button and enter:

private void button3_Click(object sender, System.EventArgs e)

{
gui.Button_Mode ();

}

Here, mainMenuToAPI is an object, which will implement all functions. As we discussed earlier, the
main form simply links menu items to functions in the mainMenuToAPI object. The implementation
is:

public void Button_Mode ()

{
iMode = (iMode + 1)% strMode.Length ;

Button_Mode_consistent ();

}

where the third line is:

189

public void Button_Mode_consistent ()

{

if (iMode ==0)

f.button3.Text = strMode[0];
else if (iMode ==1)

f.button3.Text = strMode[1];
else if (iMode ==2)

f.button3.Text = strMode[2];
else if (iMode == 3)

f.button3.Text = strMode[3];
else if (iMode ==4)

f.button3.Text = strMode[4];
else if (iMode ==5)

f.button3.Text = strMode[5];
else if (iMode ==6)

f.button3.Text = strMode[6];
else if (iMode ==7)

f.button3.Text = strMode[7];

else

iMode = 0;
f.button3.Text = strMode[0];
}

f.richTextBox1.AppendText ("Input source: " + f.button3.Text + "\n");
}

The access options are:

iMode =4 (Access);
iMode = 5 (Access Segment).

The “Source” button specifies the input source based on the variable, iMode. Double click the
“Source” button and enter:

private void button2_Click(object sender, System.EventArgs e)
{

}

gui.Button_SearachSource (gui.iMode);

The implementation is:

public void Button_SearachSource (int iMode)

{

canLiveStart = false;

if (iMode ==0)
searachSource0 ();

190

else if (iMode == 1)
searachSourcel ();
else if (iMode ==2)
searachSource2 ();
else if (iMode ==3)
searachSource3 ();
else if (iMode ==4)
searachSource4 ();
else if (iMode ==5)
searachSource5 ();
else if (iMode == 6)
searachSource6 ();
else if (iMode ==7)
searachSource7 ();
else
searachSource0 ();

}

Therefore, the database implementation is given in the following functions:
searachSource4 ();

searachSource5 ().

20.4 Database Parameter Input
The database input requires:

e Database File;
e SQL statement, which specifies how the data is obtained from the database.

The first variable is used to build the connection string for a database:
"Provider=Microsoft.Jet. OLEDB.4.0;Data Source=" + database
The second SQL statement will get data. Examples are:

Select image from imagetablel.
Select path, name from imagetable?2.

If the query selects multiple fields, this library will build the image path by path+name.
The chapter project will obtain both input parameters in a single click of the “Source” button. Now the
project will accommodate 8 different types of input; you must select an input type when the program

runs:

e When the program starts, select Input source;
e After the program has started, click the “Mode” button to select the Input source.

191

When the program starts, Figure 19.1 will be displayed, which allows the user to make a selection.
After the project starts, the Input source can be changed via the “Mode” button in the Figure 19.2.
Click the “Source” button to select Microsoft Access file; the program will also prompt you to enter
the SQL statement with the second Dialog box:

E[)atabase SQL Statement = |EI |i|

Database consists of & set oftables.
The tahle contains the locations of the images

Database retrieval is specified by a query.
For example:

select Path, Name fram List]
select Name from List2

Do notadd : atthe end of the SCIL statement!
The result of a query must produce a list of paths for images.

The resultis either a single colournn or
twio columns like path and name, that forms a path when combined together.

S0L lselect Mame fram List?)

0K | Cancel

Figure 20.1 SQL Statement.

Users will enter the SQL statement in Figure 20.1.

20.5 Database Input Implementation

The database input is implemented by the following codes:

internal string dbmsSQL ="NA";
internal void setSQL (string s)
c{lbmsSQL =s;
internal}string getSQL ()
r{eturn dbmsSQL ;

}

private bool searachSource4 ()

{
try{

/[Step 1. Database file

if (f.openFileDialogl.ShowDialog () != DialogResult.OK)
return false;

string SDBMS = f.openFileDialogl.FileName ;

f.textBox2.Text = sSDBMS ;

192

/l Step 2. SQL Statement

string sQuery ="";

Parameter_DbmsInput pd = new Parameter_DbmsInput (this, 0);
pd.ShowDialog ();

sQuery = getSQL ();

f.richTextBox1.AppendText ("Database: " +sDBMS +"\n");
f.richTextBox1.AppendText ("Query: " + sQuery +"\n");

//Step 3. Database Input
this.imageAbsoultePath = script.input.getAccessList (sSDBMS, sQuery);
if (imageAbsoultePath == null)

{
f.richTextBox1.AppendText ("Data Source fails!\n");
return false;

}

}

catch (Exception e)

{
f.richTextBox1.AppendText (e.ToString () +"\n");
return false;

}

return true;

}

private bool searachSource5 ()
{
}

Now we briefly explain the code:

e The code in section “Step 1. Database file” will get a Microsoft Access file.

e The code in section “Step 2. SQL Statement” will get the SQL statement. Here class,
“Parameter_DbmsInput”, will produce Figure 20.1, which will call function, “setSQL (string
s)”, to set the SQL statement.

e The code in section “Step 3. Database Input” will enter the two parameters (Access file and
SQL statement) into the Input class; and retrieve the image list from the database. This is
similar to other input options. The result is a string list and each string is a path of an image.

The implementation, searchSource5 (), for the Access Segment is similar.

20.6 Testing

193

To test, please refer to the last chapter.
21. Video Input

The ImageFinder breaks a video file into frames and matches the frames one by one. The Attrasoft
ImageFinder provides the users with a tool for Video Matching, including:

e Recognizing an object in a video;

o Reporting the time an object starts to appear;

o Tracking an object in a video and reporting its coordinates;

o Counting the number of frames in which the object appears; and
e Selecting a video from a video database.

This library supports only *.avi files. This chapter simply shows how to break an *.avi video file into
images. From that point on, it will be an image recognition application.

21.1 Class Library Name

The class library is:

Attrasoft. TransApplet70.Videolnput70,
The class in this library will be:

Attrasoft. TransApplet70.Videolnput70.VideoInput70.
The interface, which will be used by Videolnput70, is:

public interface I_Videolnput70

{
string getMessage();

void setVideoFile (string s);
string getVideoFile ();
bool getVideoFileStatus();

void setVideoTolmagesDir (string s);
string getVideoTolmagesDir ();
bool getVideoTolmagesDirStatus();

int getFrameNumberStart ();
void setFrameNumberStart (int i);
int getFrameNumberEnd ();
void setFrameNumberEnd (int i);
int getFrameNumberStep ();
void setFrameNumberStep (int 1);

int getNumberOfFrames();

194

bool videoToImages ();
Bitmap getBitmap (int 1);

string getInfomation();
string toString();

21.2 Class Library Overview

This Class Library will break a *.avi video into images by an algorithm like this:

For (I =start; I <=end; [+=step)

{
get Frame I from the video;
save the image to image_l.jpg;

}

To enter a video *.avi file, use these functions:

void setVideoFile (String s);
string getVideoFile ();
bool getVideoFileStatus();

The converted images are saved to a folder, called “Video To Image” directory. To set the “Video To
Image” directory, use these functions:

void setVideoTolmagesDir (String s);
string getVideoTolmagesDir ();
bool getVideoTolmagesDirStatus();

The breaking algorithm requires the starting frame number, the ending frame number, and the skip
steps. The following functions are for this purpose:

int getFrameNumberStart ();
void setFrameNumberStart (int 1);
int getFrameNumberEnd ();
void setFrameNumberEnd (int i);
int getFrameNumberStep ();
void setFrameNumberStep (int i);
To get the number of frames from the video file, use:

int getNumberOfFrames();

To get a particular frame, use:

195

Bitmap getBitmap (int 1);
To convert *.avi video to images, use:
bool videoToImages ();
Before calling videoToImages(), you should set the:

“Video To Image” Directory;
Starting Frame Number;
Ending Frame Number; and the
Skip Steps.

21.3 Link to Class Library

To include the Class Library in the project,

e Right click References and select Add Reference in the Solution Explorer;
e Browse to find “Videolnput70.dll” in “c:\transapplet70\”;
e Highlight it and click the “OK” button.

To use the class library, add:
using Attrasoft. TransApplet70.Videolnput70;
To declare an object, please use the full path for class:

public Attrasoft.TransApplet70. Videolnput70. VideoInput70 vi70
=new Attrasoft. TransApplet70. VideoInput70. VideoInput70 ();

Now the Videolnput70 object, vi70, is ready to use. Once again, in the remaining part of this chapter,

we will use script object, which has all of the objects required for the ImageFinder project. In
particular, the object for *.avi video input is “script.aviVideo70”.

21.4 AVI Video Selection

The basic Video Match operation is:
(1) Specity a Video File;
(2) Convert Video to Images;

(3) Treat the Converted Images as Directory Input covered earlier.

The only video format supported in this version is *.avi. If you need a different video format
supported, customization will solve this problem.

196

After starting the chapter projects software, selecting an *.avi file in Figure 19.1, the ImageFinder
will convert the avi video file to a set of images. After that, video recognition is converted into image
recognition.

Example. Converting AVI Video:

Start the software;

Select the option, “*.avi File”;

Click the “Source” button, and select file, “.\input_avi\clock.avi”;

Click the “Play/Stop” button in Figure 21.1 to convert the button to a “Play” button;
Click the “Play” button to play, which also converts the button to a “Stop” button;
Click the “Stop” to stop the video;

Click the “Change” button in Figure 21.1 to get Figure 21.2;

Click the “*.avi to Images” button to convert the avi file to images.

Attrasoft ImageFinder 7.0, http://attrasoft.com =10 il
Signafure Unsupervised BioFilter MeuraFiter Library MeuralMet Counfing Batch Settings Examples Help
Kew |C\|ck Key button to select a key image! Chance Flav/Ston
Source | Yinput_avitelock e / Video Fil Live
Miatching | Halp | Tmags Procsssing |

Please:
Click Key Button;
Select an Image.

The key will be
displayed here!

Source 1:H 1: 1 Match

T e T pmm|. cemm|) BB E e

Figure 21.1 Converting AVI Video File to Images, Step 1.

197

™ video /Live Parameters _ o x|
Flay Speed (1000=1sec) |1[|[|
video/Live Outout Folder |C:\hu375\abm?17imagefinder?D\:Dde\bin\Debug\lemp\
Al Video Starting Frame Number, Ending Frame Numnber, Steps:
Jo Jio i
Avi Video Mumber of frames |12
Mumber of Frame to capture live: |1g
Live Capture Interval (1000=1sc8) |1 ooo
*avito Images
Live to Images
0K

4

Figure 21.2 Converting AVI Video File to Images, Step 2.

The “Source” button selects an *.avi file, which in turn, calls the following functions:

int videoFilePointer = O;
private bool searachSource6 ()

{
try

{

if (f.openFileDialogl.ShowDialog () != DialogResult.OK)
return true;

bool b = f.openFileDialogl.FileName.EndsWith (".avi")
Il f.openFileDialogl.FileName.EndsWith (".AVI")
Il f.openFileDialogl.FileName.EndsWith (".Avi");

if (!b)

{
f.richTextBox1.Text = "Not *.avi file\n";
return false;

}

script.aviVideo70.setVideoFile (f.openFileDialogl.FileName);
if (! script.aviVideo70.getVideoFileStatus())

{
f.richTextBox1.Text = "Video Selection Fail!\n"
+ script.aviVideo70.getMessage ();
return false;

}

f.textBox2.Text = script.aviVideo70.getVideoFile () ;

script.aviVideo70.setVideoTolmagesDir
(this.videoLiveParameters .imageOutputFolder);
f.richTextBox1.AppendText ("Video To Image Directory: \n"
+ script.aviVideo70.getVideoTolmagesDir () +"\n");
videoFilePointer = 0;

198

f.pictureBox2.Image =
script.aviVideo70.getBitmap (videoFilePointer);

}

catch (Exception ee)

{
f.richTextBox1.AppendText (ee. ToString () +"\n");

return false;

}

return true;

}

This code will:

e Select an *.avi video file;
e Set the selected file to object, “script.aviVideo70”’; and
e Set the Video-To-Image Directory.

We will now explain this code. The first statement,

if (openFileDialogl.ShowDialog () != DialogResult.OK)
return;

opens a file dialog box and selects an *.avi file. The next statement,
script.aviVideo70.setVideoFile (f.openFileDialogl.FileName);
assigns the selected *.avi file to the script.aviVideo70 object. The next two statements,
script.aviVideo70.setVideoTolmagesDir
(this.videoLiveParameters .imageOutputFolder);
f.richTextBox1.AppendText ("Video To Image Directory: \n"
+ script.aviVideo70.getVideoTolmagesD
creates the “Video To Image” directory, and prints a message to the text Box. The last statement,

f.pictureBox2.Image = script.aviVideo70.getBitmap (videoFilePointer);

prints the first image in the video.

21.5 Converting Video to Images

To convert the video to images, a new button is added, “Change” (Figure 21.1). Clicking the button
will bring up the form on Figure 21.2, which has a button, “*.avi To Image”. The roles of the three
buttons are:

e The “Set Parameter” button will specify the:

199

Video-To-Image Directory
Starting Frame Number
Ending Frame Number
Skip Step

e The “*.Avi To Image” button will do the image conversion.
e The “OK” button will end the form.

Double clicking the “*.Avi To Image” button will convert the AVI video to images, which is
implemented as follows:

private void button2_Click_1(object sender, System.EventArgs e)

{
if (! f.gui.script.aviVideo70.getVideoFileStatus())

{
richTextBox1.Text =
"Please select a video source first.\n"
+ "Please click the Mode button, then click the source button.\n"
+ "The Mode button can looks like Dir, File, Sub Dir, ...\n";
return;

}

try{
f.mainMenuToAPIL.script.aviVideo70.

setVideoTolmagesDir (f.gui.videoLiveParameters .imageOutputFolder);

f.mainMenuToAPLscript.aviVideo70.setFrameNumberStart
(f.gui.videoLiveParameters .videoStart) ;

f.mainMenuToAPIL.script.aviVideo70.setFrameNumberEnd

(f.gui.videoLiveParameters .videoEnd) ;

f.mainMenuToAPIL.script.aviVideo70.setFrameNumberStep
(f.gui.videoLiveParameters .videoStep);

}

catch (Exception ee)

{
richTextBox1.Text = ee.ToString () + "\n";

return;

}

if (! f.mainMenuToAPLscript.aviVideo70.videoToImages ())
richTextBox1.Text = "Conversion fails!";

else
richTextBox1.AppendText ("Conversion completed!\n");

}

The last statement,

f.mainMenuToAPLscript.aviVideo70.videoTolmages ()

200

will convert the *.avi file into images.

21.6 Testing

To test, please refer to chapter 19.

201

22. Live Video Input

In this chapter, we extend the ImageFinder to live video. In particular, the ImageFinder breaks a live
video stream into images and matches the images one by one. The Attrasoft ImageFinder provides the
users with a tool for Live Video Matching, including:

e Recognizing an object in a live video;

o Reporting the time an object starts to appear;

o Tracking an object in a video and reporting its coordinates;

o Counting the number of frames in which the object appears; and
e Selecting a video from a video database.

The library in this chapter supports converting live video to images. The project for this chapter is to
build an Attrasoft ImageFinder that provides the users with a tool for live video matching. This
chapter will only focus on how to convert live video into images. From that point on, live video

recognition becomes image recognition. This chapter simply shows how to break an *.avi video file
into images. From that point on, it will be an image recognition application.

22.1 Class Library Name

The class library is:

Attrasoft. TransApplet70.LiveVideoInput70,
The class in this library will be:

Attrasoft. TransApplet70.LiveVideoInput70.LiveVideolnput70.
The interface, which will be used by Videolnput70, is:

public interface I_LiveVideolnput70

{

//1. parameters
bool getCaptureStatus();

bool getVideoTolmagesDirStatus();
void setVideoTolmagesDirStatus(bool b);

string getVideoTolmagesDir();
void setVideoToImagesDir(string s);

// 2. action
bool initialization ();

bool attach ();
bool detach ();

202

string getMessage();

string getInfomation();
string toString();
}

The class, “LiveVideolnput70”, will have a constructor that will take a Picture Box and Panel:

public LiveVideolnput70(PictureBox pictureBox1a, Panel panella)
{

pictureBox1 = pictureBox1a;
panell = panella;

The Live Video will be displayed in the Panel and the Picture Box. You can obtain a live image at
anytime via the Picture Box.

To declare an object, write:
internal Attrasoft. TransApplet70.LiveVideoIlnput70.LiveVideolnput70 Iv70;
To create an object, write:

Iv70 = new
Attrasoft. TransApplet70.LiveVideoIlnput70.LiveVideolnput70 (pictureBox2, panell) ;

Make sure the Picture Box and Panel objects are created first. The first thing you will do is to initialize
the LiveVideolnput70 object:

Iv70.initialization ();
This will bring the live video to the Panel. To get images, we will need to bring the live image to the
Picture Box. The following two commands will display and stop displaying live images to the Picture

Box:

bool attach ();
bool detach ();

To make the Picture Box show live images, use the attach function. To stop the Picture Box from
showing live images, use the detach function.

22.2 Link to Class Library

To include the Class Library in the project:

203

e In the Solution Explorer, right click References and select Add Reference;
e Browse to find “LiveVideolnput70.dll” in c:\transapplet70\;
e Highlight it and click the “OK” button.

To use the class library, add:

using Attrasoft. TransApplet70.LiveVideolnput70;
To declare an object, please use the full path for class:

internal Attrasoft. TransApplet70.LiveVideolnput70.LiveVideolnput70 1v70;
To create an object:

Iv70 = new

Attrasoft. TransApplet70.LiveVideoInput70.Live VideoInput70
(pictureBox2, panell) ;

22.3 ImageFinder Input

When the program starts, Figure 19.1 will be displayed. After the project is started, the Input Source
can be changed via the “Mode” button in the Figure19.2. The implementation of the “Mode” button
was given earlier.

22.4 Initialization

The LiveVideolnput70 object is implemented via the DirectShow component in DirectX. It will detect
any cameras in the USB ports and will select the first camera automatically.

There are three buttons relevant to live video:

e Source
e Live, Live Stop, Live Start;
e Live To Image.

The “Source” button will initialize the LiveVideolnput70 object and you should be able to see the live
video in the Panel:

private void searchSource7 ()

{

f. mainMenuToAPI .1v63.initialization ();
canLiveStart = true;
f.textBox2.Text = "Live Video start in the Panel";
f.richTextBox1.Text = "Live Video start in the small window!\n"
+ "To start live video in the large window, click Live button!";

204

22.5 Video to Image Design

You will need a Logitech camera for this section. After starting the camera live, the ImageFinder will
convert the live video file to a set of images. After that, live video recognition becomes image

recognition.

ﬂgAttrasoft ImageFinder 7.0, http://attrasoft.com = | &l 1[
Signature Unsupervised BioFilter MeuraFiter Library MeuralMet Counting Batch Setings Examples Help
Key |C\i|:|< Key button o select a key image! Change Plaw/Stop

Sourcs | [Live Video startinther Panel _ Mode |

Matching |Help | Truzge Prozescing |

Live Video start in the small window!
To start live video in the large windc Click the Mode button

P|Ease clicLive button! to select an input type:
. Directory,

Click Key Button; Sevtirton:
Select an Image. g

Access Segment,
*.avi file, and

The key will be Live Video.
i | Click § b
displayed here! s e

l D
Filtered | Ovigind | Segmemt | Paramster ! cex | F| »| 2| E| =] <] u| 8] x|
[]

Source LN 1: 1 Match

O o o

Status

Figure 22.1 Converting Live Video File to Images, before clicking the “Live” button.

Attrasoft ImageFinder 7.0, http://attrasoft.com] ==l il
Signature Ursupervised BioFilter MeuraFitter Library MeuradMet Counting Batch Setfings Examples Help
Key |C\|ck Key button to selecta key image! Change Plav/Stop

Source |L\ve “iden startin ther Panel Ilode

Wit |1-121P | Tmage Processing |

I

Live Start, click the same button to ¢ nl]age & Video Recognm
Software Solutior

Please:
Click Key Button;
Select an Image.

The key will be
displayed here!

Fiteed | gl | Segmem |
¥
aepwh Iu o o Iu Senree LK 1:1 Match
Status

Figure 22.2 Converting Live Video File to Images, after clicking the “Live” button.

205

Example. Converting Live Video:
e Start the software;
e Select the option, “Live Video” (Figure 22.1);
e C(Click the “Source” button to get Figure 22.1, where live video is shown on a small panel on
Figure 22.1;

e C(Click the “Live” button on Figure 22.1 to get Figure 22.2.

e C(Click the “Change” button in Figure 22.2 to get Figure 22.3;

e Click the “Live to Images” button to convert the Live Video to images;
e C(Click “OK” to exit Figure 22.3.

e C(Click the “Live Stop” button in Figure 22.2 to stop live video input.

You can find the image from live video in the folder specified by Line 2 in Figure 22.3. The default
folder is:

C:\transapplet70\imagefinder\bin\debug\temp\.

ﬂgvideo,‘-"‘Live Parameters ;Iglil
Play Speed (1000=1s&c) |1DD
Video/Live Output Folder [Caiu3_stabm71_imagefinder?icode\bimDebugitemp)

Awi Video Starting Frame Number, Ending Frame Number, Steps

[o [10 I

AwviWideo Mumber of frames |12

MNumber of Frame to capture live: |1[|

Live Capture Interval (1000=1sce) |1 000
*awvito Images
Live to Images
oK

Figure 22.3 Converting Live Video to Images.

22.6 Display Live Image in Picture Box

To convert the live video to images, we have to activate the Picture Box via the “Live” button. The
button is implemented as:

private void button6_Click(object sender, System.EventArgs e)

{
gui. Button_Live ();

}
public bool Button_Live ()

{

if (! canLiveStart)

206

f.richTextBox1.Text =
"Please set the mode to Live Video and click the source button!\n"
+ "The Mode button is right in front of the Live button.\n";
return false;
}
if iMode !=7)
{
f.richTextBox1.Text =
"Please set the mode to Live Video and click the source button!\n"
+ "The Mode button is right in front of the Live button.\n";
return false;
}
iLive = (iLive + 1)% 2;
if (Live ==0)
{
f.button6.Text = "Live Stop";
f.mainMenuToAPI .1v63.attach ();
f.richTextBox1.Text = "Live Start, click the same button to stop!";
}
else if (iLive==1))
{
f.button6.Text = "Live Start";
f.mainMenuToAPI .1v63.detach ();
f.richTextBox1.Text = "Live Stop, click the same button to start!";

}

return true;

}

If the LiveVideolnput70 object is not initialized, or the Input Source is not “Live Video”, the button
will not do anything. This button will either show the live video in the Picture Box or stop showing the
live video in the Picture Box.

Once the live video is displayed in the Picture Box, the live images can be obtained by:
PictureBox.Image.Save

(image_name, System.Drawing.Imaging.ImageFormat.Jpeg);

22.7 Converting Live Video to Images

The “Live To Image” button in Figure 22.3 will convert the live video to images. The “Live To Image”
code is:

private void button4_Click(object sender, System.EventArgs e)

{
if (! f.mainMenuToAPI .Iv63 .getCaptureStatus ())

{

207

richTextBox1.Text = "Please set the mode to Live Video\n,
click the Source button, then Live Button!\n"
+ "The Mode button is right in front of the Live button.\n";

return;

try{
f.mainMenuToAPI .Iv63.setVideoTolmagesDir

(f.gui.videoLiveParameters .imageOutputFolder);
f.mainMenuToAPI .Iv63.setNumOfFrames

(f.gui.videoLiveParameters .captureNumberOfFrames) ;
f.mainMenuToAPI .Iv63.setTimelnterval

(f.gui.videoLiveParameters .captureTimelnterval) ;
merl.Interval = f.gui.videoLiveParameters .captureTimelnterval ;

}

catch (Exception ee)

{

richTextBox1.Text = ee.ToString () + "\n";
return;

}
if (! f.mainMenuToAPI .1v63.getVideoToImagesDirStatus ())

{
richTextBox1.Text = "Set Live Video To Image Directory Fails!" ;

return;

}

richTextBox1.Text = "Output directory:\n"
+ f.mainMenuToAPI .Iv63.getVideoTolmagesDir ();

livelD = 0;
timerl.Enabled = true;

}

Basically, this button simply starts the timer via the following statement:
timerl.Enabled = true;
The rest of the statements are for various tests. Figure 22.3 has the following constructor:

public Parameter_Videolnput(Form1 f1)
{

InitializeComponent();
f="11,
img = f.pictureBox2 ;

}

Here object, img, is the picture box where the live image will be obtained. The timer will convert the
live video into images as follows:

208

private void timer1_Tick(object sender, System.EventArgs e)

{
string s =
f.mainMenuToAPI .lv63.getVideoTolmagesDir ()
+ DateTime.Now.Year+ "_"

+ DateTime.Now.Month +"_"

+ DateTime.Now.Day +"_"

+ DateTime.Now.Hour + "_"

+ DateTime.Now.Minute + " "

+ DateTime.Now.Second + "_"
+ (DateTime.Now.Millisecond /10)
+".jpg";
richTextBox1.Text=""+ (liveID ++) + ". " +s;
try
{

}

catch (Exception ei)

{

}
if (liveID >= f.mainMenuToAPI .1v63.getNumOfFrames ())

{

img.Image.Save (s,System.Drawing.Imaging.ImageFormat.Jpeg);

richTextBox1.Text = ei.ToString () ;

timer1.Enabled = false;
richTextBox1.Text = "Live Video To Image Conversion End! ";

}

The key statement is:
img.Image.Save (s,System.Drawing.Imaging.ImageFormat.Jpeg);

which will save the image in the Picture Box to a jpeg file. The following statement simply stops the
timer when the number of pre-determined frames has been reached:

if (liveID >= f.mainMenuToAPI .1v63.getNumOfFrames ())
{

timer1.Enabled = false;
richTextBox1.Text = "Live Video To Image Conversion End! ";

209

23. Counting & Tracking Design

‘Counting’ counts the number of objects in an image, assuming there is no overlap between objects. If
you need to count objects, which are NOT physically separated, then you need a customized version.
‘Tracking’ finds the most obvious object in an image and tracks it from image frame to image frame.

In this chapter, we will show the counting design. In the next chapter, we will show counting
implementation.

23.1 Data

The data is located in the following folder, “.\input_auto_track”. The example has one basic image in
Figure 23.1. This image is shifted, so the ImageFinder can track the largest segment in the images, see
Figure 23.2.

9

Figure 23.1 Original Images.

Figure 23.2 Sﬁifted Images.

210

23.2 Counting the Left Image

Attrasoft ImageFinder 7.0, http://attrasoft.com | sl il
Signafure Unsupervised BioFilter MeuraFiter Library MeuralMet Counfing Batch Settings Examples Help

Kev |C\hu3?s\abm71,lmageﬂnder?[l\:nde\bm\Debug Auta_tre TS jog Chanoe Plaw/Ston
Source |C\\lu3?s\abm71,lmageﬂnder?[l\:nde\bm\Debug\mputﬁAuanrack Ilode Live

Miatching | Halp | Tmags Procsssing |

B [court = a2

- -
 |Max Area = 3350
. |Min Area = 375 ol
Mg Area = 700
(Total Area = 23050 ! g

N [range = [0, 375)
b range = [0, 423)

Connection Threshold (2 to 8) = . @
Area Threshold = 175 L s ti
1D Area * ki ‘
B o 3350 240 80
1 1560 330 185 e
2 1450 270 180 5 (]
B |2 1125 250 zflll [MOr3FOLY| 21 ﬂ
. - b 7

miiwed | | ougnal | | seonem | pmm|. G| 3 el | o o | [

Source 1:H 1: 1 Match

Status

Figure 23.3 Counting the Left Image.
Please restart your ImageFinder so you do not carry over the old setting.

‘Counting’ will count the number of physically separated objects. Note: Customization will allow you
to count non-physically separated objects.

To count the number of segments in the key image:

Input:
Key: “\input_Auto_track\SPOTS.jpg”

Parameters
All default values.

Operation

e C(Click the “Key” button and select “.\input_Auto_track\SPOTS.jpg”;

e C(Click the “Source” button and select “.\input_Auto_track \”;

e Set the Parameters as specified above;

e C(Click the “Counting/Count Left” button to count the number of segments on the left image.
Results

Count = 32

Max Area = 3350
Min Area = 375
Avg Area =700
Total Area = 23050
x range = [0, 375)

211

Here:

y range = [0, 425)
Connection Threshold (2 to 8) = 3

Area Threshold = 175

ID

O 00NN W —O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Area

3350
1550
1450
1125
1050
1050
875
650
625
600
600
575
575
550
550
525
525
525
500
500
475
475
475
450
450
450
450
425
425
425
425
375

X

240
330
270
250
115
175
175
260
140
90

150
115
65

105
125
95

225
45

65

295
75

35

20

295
150
195
195
215
230
295
250
205

Y

80

185
180
285
355
195
285
240
395
150
75

290
195
180
120
220
210
170
250
75

325
270
225
260
235
160
120
275
135
130
20

330

Perimeter

610
285
245
200
200
190
140
120
115
100
100
105
110
110
110
95
95
105
95
95
85
90
90
&5
80
90
80
75
75
75
75
75

(x, y) is the center of the segment;

Area is the area of each segment in pixel-squares;
Perimeter is the perimeter of the segment in pixels;
x range = [0, 375) and y range = [0, 425) are the x- and y-dimensions of the image.

212

@Attrasoﬁ ImageFinder 7.0, http://attrasoft.com S s il
Signature Unsupervised BioFiler MeuralFitter Library NeuralMet Counting Batch Setings Examples Help

Kev |C.\I|u3_5\abm71_|magehnder?ﬂ\:ode\bm\Debug put_Auto_trackiSPOTS jpgl Chance | Plaw/Stop
Source IC'\IIuS_E\ﬂbm?T_ImﬁgehndEr?[l\EndE\bm\Dehug\mput_AulD_trﬂEk Mods Live

Matehing |He1}7 | tmage Processine |

-
| |Count =32

.. -" © |Max Area = 3350
. .. . ~ |Min Area = 375
© |awgArea=700
. " [Total Aves = 23050
.
b * fcrange = [0, 375)
. .. . y range = [0, 425)

L (1) . Connection Threshold (2 10 8) = @ X
0o P e Threshold = 175 L 5 &
. D Area X %

: o 3350 240 80

1550 330 185
1450 270 180

A 1 .
g -0 R |) %f
Rl shaeedl 12 om0z MORSFOLY) ® '?
AT 0 i
i It | e | | P | J =l <l ol 5]]
T o il b i 1.1 Match
Status \

Figure 23.4 Counting the Right Image.

23.3 Counting the Right Image

In the last section, we counted the number of physically separated objects in the key image. We can
count any image in the search source also. Note: Customization will allow you to count non-physically
separated objects.

To count, select an image in a search source, use the F (First), > (Next), and < (Previous) buttons in
Figure 23.4:

e C(Click the “F” button to see the first image in the search directory;
e C(Click the “>” to see the next image in the search directory;
e C(Click the “<” button to see the previous image in the search directory.

To count, click the “Counting/Count Right” button to count the number of segments on the right
image. For Figure 23.3, the results are:

Count=9
Max Area = 3024
Min Area=1116
Avg Area = 1920
Total Area = 17280
x range = [0, 288)
y range = [0, 384)
Connection Threshold (2 to 8) =
Area Threshold = 84

ID Area X Y Perimeter
3024 60 84 616
2328 159 80 580
2256 144 196 452

N = O

213

2196 63 324 316
2064 54 200 312
1812 159 300 288
1320 234 320 204
1164 228 100 168
1116 225 220 168

OO A~ W

23.4 Automatic Tracking

‘Tracking’ finds the most obvious object in an image and tracks it from image frame to image frame.
To track these images, you have to specify the source and click the “Counting/ Track Largest segment”
button.

Input:
Search directory: “.\ input_Auto_track\”

Parameters
All default values.

Operation
e C(Click the “Source” button and select “.\input_Auto_track \”;
e Set the Parameters as specified above;
e C(Click the “Counting/Track Largest segment” button to track.

Results
IMAGE002.JPG 234 66 90 90
IMAGE002a.JPG 264 66 84 84
IMAGEO002b.JPG 270 54 90 90
IMAGEQ002¢.JPG 276 90 90 90
IMAGE002d.JPG 282 144 90 90
IMAGEO002e.JPG 168 174 90 90

IMAGEO02£.JPG 114 312 90 90
IMAGE004.JPG 2 48 90 90
IMAGEQ006.JPG 402 222 96 96
IMAGE008.JPG 78 84 90 90
SPOTS.jpg 216 55 55 55

To see where the matching segment is, there are three buttons in Figure 13.4:
F (First), > (Next), and < (Previous), that can be used to show where the matched segment is:

e C(Click the “F” button to see the first matched segment;

e C(Click the “>” to see the next matched segment;
e C(Click the “<” button to see the previous matched button.

214

24. Counting

In this chapter, we will introduce Counting, which is a component of the ImageFinder. The Counting
is implemented via the following class library:

Attrasoft. TransApplet70.Counting70.

24.1 Introduction

The Counting Filter will:

e Locate all segments in an image;
e Print their center coordinates; and

The input for the Counting Filter is an image and the outputs are attributes. Each attribute is labeled by
an integer and can be obtained individually. Among the attributes are areas of segments and locations
of segments.

215

Figure 24.1 An image with 9 logos and an image with many spots.

24.2 Class Library Name

The class library is:

Attrasoft. TransApplet70.Counting70.
The class in this library will be:

Attrasoft. TransApplet70.Counting70.Counting70.
The interface, which will be used by Counting70, is:

public interface I_Counting70
{
// 1. Parameters
void setMinAreaCut(int X);
int getMinAreaCut();
void setMinConnectCut(int X);
int getMinConnectCut();

/2. Input

bool setlnput (int [] inputArrayl,int new_w1, int new_hl);
bool setlnput (Bitmap bTrain);

bool setlnput (string s);

/I 3. Output

int getCount();

int getMaxArea();

int getMinArea();

int getAvgArea();

int getTotalArea();
int getNormalizedW();
int getNormalizedH();
int [] getArea();

int [] getX();

int [] getY();

string toString();

24.3 Class Library Overview

216

To set the Counting parameters, use:

void setMinAreaCut(int x);
int getMinAreaCut();

void setMinConnectCut(int x);
int getMinConnectCut();

There are three commands for Counting input image:
bool setlnput (int [] inputArrayl, int new_w1, int new_h1);
bool setlnput (Bitmap bTrain);
bool setlnput (string s);
Once an image is entered into the Counting70, the following attributes can be obtained:
int getCount();
int getMaxArea();
int getMinArea();
int getAvgArea();
int getTotal Area();
int getNormalizedW();
int getNormalizedH();
int [] getArea();
int [] getX();
int [] getY();
string toString();

24.4 Link to Class Library

To include the class library in the project,
e Right click References and select Add Reference in the Solution Explorer;
e Browse to find “Counting70.d1l” in “c:\transapplet70\”;
e Highlight it and click the “OK” button.

To declare an object, add:

Attrasoft. TransApplet70.Counting70.Counting70 ct70
= new Attrasoft. TransApplet70.Counting70.Counting70 (richTextBox1, ip70, rd70);

Now Counting70 object, ct70, is ready to use.

24.5 Counting Parameters

217

Minimum Area
If the segment area is too small, it can be considered as noise. This parameter is used to
distinguish a small segment from background noise. The default value is 7. The “set” and “get”
functions for this parameter are:

void setMinAreaCut(int X);
int getMinAreaCut();

Minimum Connectivity
If the segment is connected to another segment via only 1 pixel, are these two segments are
really connected? This parameter is used to set a threshold for two segments being connected.
The possible values are 2 to 8 and the default value is 3. The “set” and “get” functions for this
parameter are:

void setMinConnectCut(int X);
int getMinConnectCut();

24.6 Implementing Counting

In this section, we will use the training image as an input and obtain the attributes from the Counting
object. We will add a button to the last chapter project. Double click the “Counting\Count Left” and
enter:

private void menultem165_Click(object sender, System.EventArgs e)

{

this.mainMenuToAPI.count (textBox1.Text);

}

public bool count(string sInput)

{
if (! System.IO .File .Exists (sInput))

{

appendText ("Please enter a valid image!\n");
return false;

}

bool b = script.counting.setlnput (slnput);
if (!b)
return false;
setText (countingResults() + "\n");
return true;

}

The first section makes sure a training image has been selected:

218

System.IO .File .Exists (sInput).

The second section uses the Counting object in the script object, “script.counting”. The object uses the
training image as the input:

bool b = script.counting.setInput (sInput);
The last section calls the following function to print the attributes calculated by the Counting:

setText (countingResults() + "\n");

24.7 Tracking

In the TransApplet, tracking is a special type of counting.
e The Counting Filter selects 1 or 2 or ... 5 of the largest segments.
e The Tracking Filter stores their coordinates and sizes. It will do this for all images in a folder
and the results are a stream of attributes (centers of gravity, sizes) of images. In this way, the
tracking is performed for the largest segment, second largest segment, ...

For the tracking implementation, please see the project in:

“c:\transapplet70\imagefinder\”.

24.8 Testing

Please see the last chapter.

219

25. Batch Job

In this chapter, we introduce the Batch commands. When matching images, you will need to select
many filters. For each selected filter, you will need to select many parameters. If this is your first
matching and you do not like the default values, you will have go through a trial and error process to
select an optimal set of parameters.

However, if this is your second matching, you can save everything in the first matching and then
use a Batch command. Click the "Batch/Save" menu command; you will get the batch file in the text
area.

Attrasoft ImageFinder 7.0, http://attrasoft.com 5 | sl il

Key | |C\|ck Key button to select a key image! ance Plav/Ston
Source |C\|ck Mode to select an input type, then Source to select a source Save 2 ode Live

Miatching | Halp | Tmags Procsssing |

(REET]

COpen 1 :

Please: s '
. En

Click Key Button; o
Select an Image. e

Load

. R
The key will be i
H | What is This 7

displayed here! e

| o | [| | | B EE EE B
xywrh |n o o |n

Source 1:H 1: 1 Match

Status

Figure 25.1 Batch Menu.

25.1 Batch Code

Batch Code is a set of text files that saves the ImageFinder parameters. The Filter selection and
Parameter setting can be saved in one of 5 files by the following commands:

Batch/Save

Batch/Save 2
Batch/Save 3
Batch/Save 4
Batch/Save 5

These 5 commands create the batch codes and saves them to 5 different files. The batch codes can also
be recalled later by clicking the following commands:

220

Batch/Open
Batch/Open 2
Batch/Open 3
Batch/Open 4
Batch/Open 5
These 5 commands open existing batch codes.

25.2 Sample Batch Files

Click “Example/Special Example/Document Duplication™; you will get the following batch code,
which is very typical.

[ImageFinder 7.0]
ExecutionCode=3002
[Input]
keyFileName=Click Key button to select a key image!
keysegmentX=0
keysegmentY=0
keysegmentW=0
keysegmentH=0
searchSource=.\Debug\sp_document
searchSourceType=2
searchSQLStatement=NA
[ImagePreProcessing]
BorderCut=0
MaskX=0
MaskY=0
MaskW=0
MaskH=0
MaskType=0
StickShift=0
SkipEmptyBorder=0
SkipEmptyBorderPercent=0
SkipEmptyBorderEdgeFilter=0
SkipEmptyBorderThresholdFilter=5
Parameter12=0
Parameter13=0
Parameter14=0
Parameter15=0
[Image Processing Filters]
EdgeFilter=2
ThresholdFilter=1
CleanUpFilter=2
DoubleProcessing=0
R1=0
R2=128
R3=2
G1=0
G2=128
G3=2
B1=0

221

B2=128
B3=2
Parameter14=0
Parameter15=0
Parameter16=0
Parameter17=0
Parameter18=0
Parameter19=0
[Reduction Filter]
ReductionFilter=0
SegmentCut=0
SizeCut=0
BorderCut=0
lookAtX=0
lookAtY=0
lookAtXLength=0
lookAtYLength=0
[Signature Filter]
SignatureFilter=9
[Unsupervised Filter]
UnsupervisedFilter=0
FaultToleranceScale=20
Mode=0
Threshold=0
OutputFileType=0
Show File=1
Blurring=2
Sensitivity=4
UseRelativeScore=0
ShowScore=1
AutoSegment=0
Parameter12=0
Parameter13=0
Parameter14=0
Parameter15=0
Parameter16=0
Parameter17=0
Parameter18=0
Parameter19=0
[BioFilter]
bioFilter=0
FaultToleranceScale=20
Mode=0
Threshold=0
OutputType=0
ShowFile=1
Blurring=2
Sensitivity=4
UseRelativeScore=0
ShowScore=1
AutoSegment=0
Parameter12=0
Parameter13=0

222

Parameter14=0
Parameter15=0
Parameter16=0
Parameter17=0
Parameter18=0
Parameter19=0
[NeuralFilter]
neuralFilter=2
FaultToleranceScale=20
Mode=0
NeuralFilterSize=2
Threshold=0
OutputFileType=0
ShowFile=1
Blurring=0
Sensitivity=0
UseRelativeScore=0
ShowScore=1
AutoSegment=0
Parameter13=0
Parameter14=0
Parameter15=0
Parameter16=0
Parameter17=0
Parameter18=0
Parameter19=0
[Neural Net]
neuralNetFilter=0
symmetry=3
rotationType=0
translationType=0
scalingType=0
sensitivity=50
blurring=10
internal WeightCut=100
Threshold=0
segmentSize=0
imageType=1
OutputFileType=0
AutoSegment=0
Mode=0
Parameter15=0
Parameter16=0
Parameter17=0
Parameter18=0
Parameter19=0

End
When you create the batch code by command, Batch/Save, you will see the above code in the text area.

When you open a batch file by command, Batch/Open, you will see the above code in the text area.

223

25.3 Batch Design

This section will explain how the Batch code is used.

(1) Create an application using the ImageFinder;
(2) Save the setting to a batch code with the following commands:

Batch/Save

Batch/Save 2
Batch/Save 3
Batch/Save 4
Batch/Save 5

You might find the following online note useful in helping you remember what you saved into
these 5 batch files:

Batch/Notes
(3) Later, you can open the Batch file with the following commands:
Batch/Open
Batch/Open 2
Batch/Open 3
Batch/Open 4
Batch/Open 5

(4) To load the parameter without running, click:
Batch/Load.

(5) To load the parameter and run, click:
Batch/Run.

The Batch/Save command saves the following information:

e Filter selection and their Parameter settings;
e The signature file, which contains the signatures from images.

25.4 Batch Execution Code

224

_la/x]

Batch Code IE

1001 Unsupervised Matching 1:N -
1002 Unsupervised Matching NN
1003 Unsupervised Matching MN:M2

2001 BioFilter_Matching 1:M
2002 BioFilter_tatching N:M
2003 BioFilter_Matching N:k2
2004 BioFilter_Matching N:k3
2005 BioFilter_Matching N:k4

30m MeuralFilter_Matching 1:M

300z MeuralFilter_atching NN

3003 MeuralFilter_hatching k42

3004 MNeuralFilter Matching N3 LI

Ok | Cancel

Figure 25.2 Execution Code Window.

There are many commands in the ImageFinder. Each command has an integer for identification. This
integer is called Batch Execution Code. The “Batch/Run” command uses this code to run the
command specified by the batch file.

To find the batch code for each command, click:
Batch/Set Execution Code
You will see a textbox and the following codes:

1001 Unsupervised Matching 1:N
1002 Unsupervised Matching N:N
1003 Unsupervised Matching N:M2

2001 BioFilter_Matching 1:N
2002 BioFilter_Matching N:N
2003 BioFilter_Matching N:M2
2004 BioFilter_Matching N:M3
2005 BioFilter_Matching N:M4

3001 NeuralFilter_Matching 1:N
3002 NeuralFilter_Matching N:N
3003 NeuralFilter_Matching N:M2
3004 NeuralFilter_Matching N:M3
3005 NeuralFilter_Matching N:M4

4001 NeuralNet_Matching 1:N
4002 NeuralNet_Matching N:N

The current batch code is the code of the last run. When the software started, the current batch code is
1001. To change it:

225

e Click Batch/Set Execution Code;
e Enter the Batch Execution Code to the text box and click the “OK” button.

You can also make changes directly in the batch files. The batch files are abm70.txt, abm70_2.txt,

abm70_3.txt, abm70_4.txt, abm70_5.txt.

25.5 API

The Batch API is:

public interface I_Batch
{
void setExecutionCode(int Xx);
int getExecutionCode();
string [] getExecutionCodeName();
int [] getExecutionCodeValue();
bool getExecutionCodeStatus();

bool save (int 1);
bool open (int i);
bool load ();
bool run();

}

These functions match the menu items introduced earlier.

25.6 Implementation

Double click menu item “Batch/Run” and enter:

private void menultem142_Click(object sender, System.EventArgs e)

{
this.mainMenuToAPI .batch_Run ();

}

Here, “mainMenuToAPI” is an object, which will implement all functions. As we discussed earlier, the
main form simply links menu items to functions in the “mainMenuToAPI” object. The implementation

1S:

public bool batch_Run ()

{
bool b = false;

try

{
b = script.batch.run () ;
if (!b)

226

return false;

}

b = batch_GUI_LoadInput ();

if (b)

{
appendText ("Batch/Run: No Search Source Available\n");
return false;

}

script.results_IN = script.tranAppletPara .results_IN ;
b = batch_GUI_LoadOutput ();
if (b)

{
appendText("Batch/Run: No Search Results Available\n");

return false;

}

catch (Exception e)

{
appendText (e.ToString () + "\n");

return false;

return b;

}

The first section,

b = script.batch.run () ;
makes a batch run.
The second section,

b = batch_GUI_LoadInput ();
retrieves and displays search source images.
The third section,

script.results_IN = script.tranAppletPara .results_IN ;
b = batch_GUI_LoadOutput ();

227

displays result images.

The details are given in the chapter project located at “c:\transapplet70\imagefinder\”.

228

26. ImageFinder for Dos

ImageFinder for Dos is a quick and easy programming tool. ImageFinder for Dos is the
ImageFinder for Windows without the Graphical User Interface (GUI). Other than this, the two
software are exactly the same.

The chapter project is located at:
c:\transapplet70\transapplet70.chap26\.
The executable file is located at:

c:\transapplet70\ transapplet70.chap26\bin\Debug\.

26.1 Why Dos Version?

ImageFinder for Dos is the ImageFinder for Windows without the Graphical User Interface (GUI).
If you have developed a solution with the ImageFinder and want some minimum programming
capability, the ImageFinder for Dos is a really simple and easy option.

Example. The ImageFinder for Dos is useful for the following 1:N Matching while the training image
is:

e A newly captured image via a camera;

e A newly captured image via a scanner;

e A newly uploaded image via the Internet;

e A newly uploaded image via a video-phone.

The following are the potential applications:

e Cell-phone point & click:

o Identifying pictures or other art in a museum, where it is desired to provide additional

information about such art objects to museum visitors as well as related advertisement;
e Cell-phone point & click:

o Identifying wine labels, where it is desired to provide additional information about this

wine as well as related advertisement;
e Cell-phone point & click:

o Identifying sport logo, where it is desired to provide additional information about ticket

purchases for this team as well as related advertisement;
e Cell-phone point & click:

o Identifying a tourist attractions, such as the Space Needle in Seattle, where it is desired
to provide additional information about the tourist attraction as well as related
advertisement;

e (Cell-phone point & click:

229

o To buy certain products, for example "pointing and clicking" on a theatre advertisement
to buy tickets as well as related advertisements (people who see this movie will often
see that movie).

26.2 The Idea

There are also ten menu items under the menu, “Batch”, in the ImageFinder for Windows:

Batch/Save

Batch/Save 2
Batch/Save 3
Batch/Save 4
Batch/Save 5

Batch/Open

Batch/Open 2
Batch/Open 3
Batch/Open 4
Batch/Open 5

The first 5 commands create the batch codes and saves them to 5 different files. The batch codes can
be opened later by the next 5 commands.

ImageFinder for Dos allows you to run these five batch files from the Dos prompt, Dos batch file,
Visual Basic program. This allows developers to quickly integrate the ImageFinder into their
applications.

26.3 Batch Design

The ImageFinder for Dos commands are:
C:\>...\chap26 x

Where x =1, 2, 3,4, or 5 (used to specify one of the five batch files). The Dos version uses the same
files as the Batch70 object. If you use the command:

C:\>...\chap26 1
You will need the following files:

Abm70.txt
Bf70.txt
Bf270.txt
Nf70.txt
Nf270.txt
Tp70.txt

230

If you use the command:
C:\>...\chap26 2

You will need the following files:
Abm70_2.txt
Ba70_2.txt
Bf270_2.txt
Nf70_2.txt
Nf270_2.txt
Tp70_2.txt

Since this is basically the Windows version without the form, it will stop when the Window’s version
stops. If you want to stop the ImageFinder at the Dos prompt,

e Hit “Ctrl+Alt+Del” to open the Windows Task Manager;
e (o to the Processes Tab;
e Stop chap26.exe.

26.4 Class Library Name

The class library is:

Attrasoft. TransApplet70.Dos70.
The class in this library will be:

Attrasoft. TransApplet70.Dos70.Dos70.
The interface, which is implemented by Dos70, is:

public interface I_Dos70
{

bool save (int 1);

bool open (int 1);

bool load ();

bool run();

bool ImageFinderForDos (int 1);

}

26.5 Class Library Overview

The class library, Dos70, will introduce the ImageFinder for Dos.

There is one only command:

231

bool ImageFinderForDos (int x).
The parameter, x, can have the following values: 1, 2, 3, 4, 5.

e Value 1 corresponds to the ImageFinder command: “Batch/Open” + “Batch/Run’;
e Value 2 corresponds to the ImageFinder command: “Batch/Open 2 + “Batch/Run”; ...

26.6 Creating Console Project
To create a new C# Console project:

e Start the Visual Studio .Net, (see Figure 4.1).

e Click File = New Project command. The New Project dialog box is displayed (Figure 4.2).

e Highlight the Visual C# project folder in the Project Type list to display the templates that are
available for C#. Then, highlight the Console Application template (Figure 4.2).

¢ Enter a name for the project and select the location for the project. A folder with the same name
as the project is automatically added to the location you specify. We will use chap26 as the
project name.

e C(Click the “OK” button to start the new project.

The Console project will also has a parameter. To set it:
e In the Solution Explorer, right click Property;

e In the Property Window, go to “Configuration property”;
e In “Command Line Arguments”, enter 1.

26.7 Link to Class Library

To include the class library in the project,
e In the Solution Explorer, right click References and select Add Reference;
e Browse to find “*.dll” in “c:\transapplet70\”;
e Highlight it and click the “OK” button.

To declare an object, add:

Attrasoft. TransApplet70.Dos70.Dos70 d70
= new Attrasoft. TransApplet70.Dos70.Dos70 ();

26.8 Implementation the Project

232

The implementation is fairly straightforward. The first thing to do is to read the argument, which
determines which batch file is to be used. This argument can be 1, 2, 3, 4, or 5. Then it will call the run
function in the Dos object.

The algorithm is:

Step 1.

Object d70

The project first creates an object, d70. If this object cannot be created, the program terminates.

Step 2.

Step 3.

Step 4.

Argument
The project will then find the argument, which determines the batch file to be used. If there is
any error, it will use the default 1.

Data Files.
If you use the command:

C:\>...\chap26 1
You will need the following files:

Abm70.txt
Bf70.txt
Bf270.txt
Nf70.txt
Nf270.txt
Tp70.txt

These text files are used by the ImageFinder for Dos and are stored in the “.\data\” folder. If
you did not change the installation folder, it is:

“c:\transapplet70\ transapplet70.chap26\bin\Debug\data”.

Before you can run the Dos version, you must prepare these files using the Windows version
for your application.

Code

class Class1

{

static string sCode = "0";
static void Main(string[] args)

{
Attrasoft. TransApplet70.Dos70.Dos70 d70;

try
{

}

catch (Exception ee)

{

d70 = new Attrasoft. TransApplet70.Dos70.Dos70 ();

Console.Write (ee.ToString ());
233

return,;

}

int theCode = 0;
if (args.Length ==0)

theCode = 0;

else

{
sCode = args[0];
theCode = getCode ();

}

Console.WriteLine ("Batch Option " + theCode);

try

{
bool b = d70.ImageFinderForDos (theCode) ;
Console.Write (d70.toString ());
if (!b)

Console.Write ("ImageFinder for Dos fails!");

}

catch (Exception ee)

{
Console.Write (ee.ToString ());

}

}
static int getCode ()
{

inti=0;

try

{
1 = int.Parse (sCode);

}

catch

{
Console.WriteLine ("Invalid args!");
return 0O;

}

if (((>=0)&& (@1G<=5))
return i;

return 0O;

}

}

The first section,

d70 = new Attrasoft. TransApplet70.Dos70.Dos70 ();

creates a Dos object.

234

The second section,

sCode = args[0];
theCode = getCode (); (which calls int.Parse (sCode))

gets the “Command Line Arguments”.

The last section,

bool b = d70.ImageFinderForDos (theCode) ;

calls the dos command.

26.9 Example

The default folder for the project is:
“C:\transapplet70\transapplet70.chap26\”.
The executable file folder is:
“C:\transapplet70\transapplet70.chap26\bin\debug”.
The data folder is:
“C:\transapplet70\transapplet70.chap26\data\.
Go to Dos command and enter:
“C:\transapplet70\transapplet70.chap26\bin\debug\chap26 17,
You will duplicate the project under the following menu item in the Windows version:

“Examples\BioFilter\Label N:N”.

26.10 How to Use ImageFinder For DOS

The typical use of the dos version is a 1:N Matching, where the “1” is the newly captured image and
the “N” is the previously stored images. The “N” image will not change, but the “1” image changes all
the time. How is this change entered into the ImageFinder for Dos? The answer is the parameter file.

The ImageFinder for Dos uses a set of parameter files, Abm70.txt for argument x = 1, Abm70_2.txt
for argument x =2,

If you use the following command:

235

“C:\transapplet70\transapplet70.chap26\bin\debug\chap26 17,
you will need the following files:

Abm70.txt
Bf70.txt
Bf270.txt
Nf70.txt
Nf270.txt
Tp70.txt

stored the following folder:
“C:\transapplet70\transapplet70.chap26\bin\debug\data\”.
The Abm70.txt looks like this:

[ImageFinder 7.0]
ExecutionCode=3002
[Input]
keyFileName=Click Key button to select a key image!
keysegmentX=0
keysegmentY=0
keysegmentW=0
keysegmentH=0
searchSource=.\Debug\sp_document
searchSourceType=2
searchSQLStatement=NA
[ImagePreProcessing]
BorderCut=0
MaskX=0
MaskY=0
MaskW=0
MaskH=0

The following line,
KeyFileName = Click Key button to select a key image!

specifies the key image. Before the ImageFinder for Dos is called, your Dos application must create a
new Abm70.txt, with the above line specifying the newly captured image. This can be achieved by
writing a simple program, which creates a new abm70.txt by copying from a master file. The simple
program will copy line by line from a master file to abm70.exe with the exception of line 4, which
specifies the newly captured image. In this way, when the ImageFinder for Dos is called, the newly
captured image will be used.

236

27. Introduction To ImageHunt

We will briefly introduce the Attrasoft ImageHunt in this chapter. Attrasoft ImageHunt is an
Internet Image Search Engine. The ImageHunt is the Internet version of the ImageFinder.

Unlike the ImageFinder, the Internet Search Engine, by definition, does not bother users with
complicated parameters; therefore, all the parameters in the ImageHunt must be fixed. The
ImageFinder, however, will require customization for a particular problem, say logos, auto parts,
documents,

If you order the ImageHunt from Attrasoft, the following will be required:

(1) Proof-Of-Concept (POC) Project. The POC project will tweak and fix the internal parameters
for a particular problem.
(2) ImageHunt License and Support.

If you plan to build the ImageHunt yourself, this chapter is for you:

(1) Fix the ImageFinder parameters yourself;
(2) The code for building the ImageHunt can be found in this chapter.

This chapter will:

e Introduce the ImageHunt;
e Introduce Asp.Net (Active Server Page);
e Introduce the ImageHunt programming.

27.1 Why ImageHunt?

ImageHunt is the ImageFinder for Windows with a web interface. If you need the ImageFinder for
Windows, you might need the ImageFinder for Web at some point. The web users, however, are not
supposed to know how to tune the ImageFinder parameters, so that job has to be done in advance. The
cost for such convenience is that each ImageHunt is limited to a particular type of application.

27.2 ImageHunt Design

This chapter will show you how to program the ImageHunt. The basic idea is this:

User selects an image;

User uploads the image;

ImageHunt creates a batch file based on the newly uploaded image;
ImageHunt runs the batch file;

237

e ImageHunt sends the resulting html page back to users.

The main job is to tweak the parameters via the ImageFinder. After that, simply add a web interface to

the ImageFinder for Dos to complete the ImageHunt. The ImageHunt works like this:

(1) Start the ImageHunt (Figure 27.1).
1ol x|

File Edit View Favorites Tools Help

=Btk - = -) at | Qhsearch [GFavorites GlMedia 44 | E-S =
Address I@ http: fflocalhost /ImageHuntes) Attrasoft_ImageHuntl , aspx j (?Go |Links e

=

| Browse... | Upload |

| Search |

|E| Please [1] Click Browse; [2] Click Upload; [3] Click Search.

[
|.§| Done ’_ ’_ ’_ E Local intranet: 4

Figure 27.1 The ImageHunt.

(2) Click the “Browse” button to select an image (Figure 27.2).

4} Attrasoft ImageHunt - Microsoft Internet Explorer 10l =]

File Edit View Favorites Tools Help

=Btk - = -) at | Qhsearch [GFavorites GlMedia 44 | E-S =
Address I@ http: fflocalhost /ImageHuntes) Attrasoft_ImageHuntl , aspx j (?Go |Links e

=

hpuh\wwwroot\lmageHuntES\autoZQDE?U).jpg Browse... | Upload |

| Search I

|E| Please [1] Click Browse; [2] Click Upload; [3] Click Search.

[
|.§| Done ’_ ’_ ’_ E Local intranet: 4

Figure 27.2 Select an image.

238

(3) Click the “Upload” button to upload the image (Figure 27.3).

4} Attrasoft ImageHunt - Microsoft Internet Explorer 10l =]

File Edit View Favorites Tools Help

R S e | at | Qhsearch [GFavorites GlMedia 44 | E-S =
Address I@ http: fflocalhost /ImageHuntes) Attrasoft_ImageHuntl , aspx j (?Go |Links e

=

| Browse... | Upload |

[2067(1).jpg Search |

Tpload file to; Data\2067{1).1pg

[
|.§| Done ’_ ’_ ’_ E Local intranet: 4

Figure 27.3 Upload image.

(4) Click the “Search” button to search (Figure 27.4).

localhost,/ImageHunt65/imagefinder /b1.htm - Mi ‘nek E; _|EI|1|

File Edit Wiew Favorites Tools Help

R S e | at | Qhsearch [GFavorites GlMedia 44 | N S -

Address I@ http:/ flocalhost{ImageHunteS imagefinder /b1 htm j 6o | Lirks **

-

httpf168.20. 197 230MmageHunt® Slibrary2067 (1) jpa

httpf168.20. 197 230/MmageHunté Slibrary2067(1).jpg 47127

httpf168.20. 197 230/ MmageHunté Slibrary2067(2) jpg 23077

httpf168.20. 197 230MmageHuntd Slibrary2067(3). jpg 30877 L
httpf168.20. 197 230/MmageHunté Slibrary2067(4) jpg. 8111

httpf168.20. 197 230/MmageHunté Slibrary2071(1).jpg 8287

httpf168.20. 197 230/MmageHunts Slibrary/2082(1). jpg. 16711

httpf168.20. 197 230MmageHunté Slibrary2082(2) jpg 16808

httpf168.20. 197 230MmageHunt® Slibrary2082(3) jpg 15415

httpf168.20. 197 230MmageHunt® Slibrary2082(4) jpg 18853

httpf168.20. 197 230MmageHunté Slibrary3293(1).jpg. 11170 x|
|.§| Done ’_ ’_ ’_ E Local intranet: 4

Figure 27.4 Display the results.

239

27.3 Introduction to Web Server

Web applications require a server and a client. The client requests a page from the server and the server
returns the page to the client; the page is displayed inside the Internet Explorer.

To develop a web application, you must have a server. The ImageHunt requires Microsoft IIS
(Internet Information Services) and the Internet Explorer. You must install IIS before you install C#.

Internet Browsers display pages written in http language, web page. The web pages are stateless, i.e. a
page does not store any information about its contents from one page to the next. The equivalent to the
Windows version of the ImageFinder is this: when you start the ImageFinder, you are only allowed 1
click; if you want to make another click, close the ImageFinder, restart, and then make your next click.

There are several ways to address this limitation, including the “Get” method and the “Post” method.
e The “Post” method stores cookies on the local machine. If you choose the “Post” method, you
must inform your clients to accept cookies.
e The “Get” method sends state information back to the server via the web address.

Later in this chapter, you will need to choose one of the two methods.

27.4 Install ImageHunt

The software requirement for the ImageHunt is Microsoft .Net Framework.
To load the ImageHunt:

1. IIS Folder or Virtual Folder.
e Copy “CD:\ImageHunt65” to “C:\InetPub\wwwroot\”; OR
Create a virtual folder in IIS, “C:\...\ ImageHunt65\".

IIS Application

Click Start\ Setting\ Control Panel \Administrative Tools\Internet Service Manager;
Right click the “ImageHunt65” folder and select Property;

Click the “Application” button to create application;

Click “OK”.

e o o o |

het

Web shared.
e Make sure the “ImageHunt65” folder is web shared.

27.5 Create Web Project

Now we start to create an ImageHunt. To create a new C# ASP.NET Application project:

240

e Start the Visual Studio .Net.

e Click File =» New Project command. The New Project dialog box is displayed.

e Highlight the Visual C# project folder in the Project Type list to display the templates that are
available for C#. Then, highlight the ASP.NET Application template.

e Enter a name for the project and select the location for the project. A folder with the same name
as the project is automatically added to the location you specify.

e C(Click the “OK” button to start the new project.

The implementation is fairly straightforward. The algorithm is:

Step 1. Open an image via the Internet Explorer.

Step 2. Upload the Image.

Step 3. Create a batch file on the server based on the submitted image.
Step 4. Run the batch file.

Step 5. Send the results back.

We will make the following assumption for simplicity: all library images are stored in a single folder.

27.6 Step 1. Open Image File

27.6.1 Create the Data Directory

After you create the application, you create the Data directory that will accept uploaded files. After you
create this directory, you must also set write permission for the ASPNET worker account. In the
Solution Explorer window of Visual Studio .NET, right-click the ASP.Net project, point to Add, and
then click New Folder to create a folder, “Data”.

27.6.2 Modify the WebForm1.aspx Page

To modify the HTML code of the WebForm1.aspx file to permit users to upload files, follow these
steps:

1. In the WebForm1.aspx Designer window, right-click WebForm1.aspx and select View HTML
Source.

2. Locate the following HTML code, which contains the:
<form>
</form>

3. Replace it as follows:

241

<form id="Form1" method="post" enctype="multipart/form-data" runat="server">

<INPUT type=file id=File]l name=Filel runat="server" />
</form>

4. Run and test it.

This html code simply opens an Open File Dialog so Users can select a key image.

27.7 Step 2. Upload Image

Add the following to the form so it will look like Figure 27.1:

e Upload button

e Search button

e TextBox

e Error message label

Double click the “Submit” button and enter:

private void Submitl_ServerClick(object sender, System.EventArgs e)

{
if((Filel.PostedFile !=null) && (Filel.PostedFile.ContentLength >0))

{
string fn = System.IO.Path.GetFileName(File1.PostedFile.FileName);
SaveLocation = Server.MapPath("Data") + "\" + fn;

Session ["theFileName" | = SavelLocation;

string displayLocation = dataPath + "\" + fn;

try

{
Filel.PostedFile.Save As(SavelLocation);
Label2.Text = "Upload file to: " + displayLocation;

Image2.ImageUrl = displayLocation;

TextBox2.Text =

System.IO.Path.GetFileName(File1.PostedFile.FileName);
}

catch (Exception ex)

{

}
}

Label2.Text = "Error: " + ex.Message;

else

Response.Write("Please select a file to upload.");

242

}

First of all, the following code makes sure a valid image has been selected:

if((Filel.PostedFile !=null) && (Filel.PostedFile.ContentLength >0))
{

{
}

else

Response.Write("Please select a file to upload.");

The following code finds the image name from the client’s computer and creates the path for this
image on the server:
string fn = System.IO.Path.GetFileName(Filel.PostedFile.FileName);
SaveLocation = Server.MapPath("Data") + "\" + fn;

The following code uploads the file:
try
{

}
catch (Exception ex)

{
}

Filel.PostedFile.SaveAs(Savelocation);

Label2.Text = "Error: " + ex.Message;

27.8 Step 3. Create Batch File
27.8.1 Cookies or URL

The User will make three clicks:

e Select File;
e Upload File;
e Search.

The third click is the “Search” button, which will lead to a new web form. The code for the “Search”
button is:

private void Button1_Click(object sender, System.EventArgs e)

{

string fn = TextBox2.Text;
SaveLocation = Server.MapPath("Data") + "\" + fn;

243

Response.Redirect ("Attrasoft_ImageHunt2.aspx" + "?p="+ SaveLocation);

}

The uploaded image is passed to the new web form, “Attrasoft_ImageHunt2.aspx”. You could choose
cookies (Post Method):

Session ["theFileName" | = SavelLocation;
Or URL (Get Method):
Response.Redirect ("Attrasoft_ImageHunt2.aspx" + "?p="+ SaveLocation);

Obviously, we have chosen the URL to pass the location of the uploaded image. If you choose the
Cookies, you must inform your client to accept cookies.

27.8.2 Create Batch File

At this point, we are redirected to web form, “Attrasoft_ImageHunt2.aspx”. Upon starting this web
form, the following code will call function, “start()”:

private void Page_Load(object sender, System.EventArgs e)

{
start();

}

The first thing “start()”” will do is to create a batch file used by the ImageFinder for Dos:

string master = "master.txt";
string parameterFile = "abm70.txt";
bool createFile ()
{
StreamWriter sw;
StreamReader sr;
string sRead;
inti=0;

try
{

sr = new StreamReader (matchLocation + master);
sw = new StreamWriter (matchLocation + parameterFile);

1=0;

while (sr.Peek () !=-1)
{

sRead = sr.ReadLine ();
if(i==3)

{

244

//sw.WriteLine ("trainFileName=" + Session ["theFileName"]);
sw.WriteLine
("trainFileName=" +Request.QueryString ["p"].ToString ());

}

else
sw.WriteLine (sRead);
1++;

}

sw.Close ();

sr.Close ();

}

catch (Exception em)

{
Labell.Text = em.ToString () +"\n";
return false;

}

return true;
}/create file

This function basically copies "master.txt” to "abm70.txt" line by line, with the exception of line 3:

if(i==3)
{
//sw.WriteLine ("trainFileName=" + Session ["theFileName"]);
sw.WriteLine
("trainFileName=" +Request.QueryString ["p"].ToString ());

}

This is where the ImageHunt learns where the new image is. There are several other minor things; we
will omit them here.

27.9 Dos Class

We will briefly review the Dos70 library introduced in the last chapter. We will use the
“Attrasoft. Transapplet70.Dos70” library; please read the last chapter to become familiar with this
library.

The main class in this library will be:

Attrasoft. TransApplet70.Dos70.Dos70.

The interface, which is implemented by Dos70, is:

public interface I_Dos70
{

//Parameters

245

string getFilePath ();
void setFilePath (string s);

// Command
bool save (int 1);
bool open (int1i);
bool load ();
bool run();
bool ImageFinderForDos (int 1);

}

To set the batch file, use:

string getFilePath ();
void setFilePath (string s).

There is only one command:

bool ImageFinderForDos (int x).
which is the same as:

bool open (int 1);

bool run();

The parameter, x, can have the following values: 1, 2, 3, 4, 5.
e Value 1 corresponds to the ImageFinder command: “Batch/Open” + “Batch/Run’;

e Value 2 corresponds to the ImageFinder command: “Batch/Open 2 + “Batch/Run”; ...

To include the class library in the project,

e In the Solution Explorer, right click References and select Add Reference;
e Browse to find “Dos70.d1l” in “c:\transapplet70\”;
e Highlight it and click the “OK” button.

To declare an object, add:
Attrasoft. TransApplet70.Dos70.Dos70 d70
= new Attrasoft. TransApplet70.Dos70.Dos70 ();

27.10 Step 4. Batch Run

Now the batch file is created, and we simply make a batch run:

void start()

{

246

}

matchLocation = Server.MapPath(filePath) + "\\" ;
bool b = createFile ();

if ('b)
{

Labell.Text = "Creating parameter file fails!" ;
return ;

d70 = new Attrasoft. TransApplet70.Dos70.Dos70 ();

d70.setFilePath (matchLocation);
d70.open (1);

70.run ();

Response.Redirect ("imagefinder/b1.htm");

The following code creates a batch file:

bool b = createFile ();

if (!b)

{
Labell.Text = "Creating parameter file fails!" ;
return ;

}

The following code creates a Dos70 object:

d70 = new Attrasoft. TransApplet70.Dos70.Dos70 ();

The following code sets up the parameters:

d70.setFilePath (matchLocation);

d70.open (1);

The following code runs the batch file:

70.run ();

This statement will create an ImageFinder output file. The last step is to show the results:

247

Response.Redirect ("imagefinder/b1.htm").

248

28. ImageFinder Support Service Packages

ImageFinder for Windows is an off-the-shelf Application Software that enables System Integrators,
Solution Developers, and Individuals to quickly test their own Image Recognition ideas.

ImageFinder for Dos is command-line software that enables System Integrators, Solution Developers,
and Individuals to make a quick-and-dirty system integration to test their product prototypes and
services.

TransApplet is .Net Class Library that enables System Integrators, Solution Developers, and
Individuals to quickly add Image Recognition capability to their products and services.

Attrasoft Transapplet Services are designed to accelerate a company's path to deploy Image
Recognition Solutions. Our structured Service Offerings help you to develop your products/services
with the ImageFinder as a component.

28.1 What is Support Service?

The TransApplet Annual Support rate is the 20% of the project.

ImageFinder Support Service Packages are designed to help a person/company to understand the
process of integrating Image Recognition technology into their product/service. From a large set of
possible paths, a person/company must plan the most realistic execution to ensure the success of the
project.

e The focus of Support Service is to follow the right development path and shorten the
learning curve for developers.

e Based on dozens of past projects, Attrasoft’s development experience will specify the
required work and map the shortest path to the system integration;

e Most importantly, Attrasoft Services might prevent you from following a wrong path,
thus saving you from an unnecessary waste of resources, or even failure of the project.

28.2 Process

Image Recognition Solution Development Procedure is:

(1) Set up the system (you can do that);
(2) Collect the data (you can do that);
(3) Preliminary Assessment via our off-the-shelf software, the ImageFinder.

e You should get Identification Rates ranging from 60% to 89%.

e The best rate, one of our customers (without any customization) was able to obtain, was an
89% ldentification Rate.

249

o The off-the-shelf ImageFinder has 70 open parameters for users to adjust, which is the
reason customers are only able to achieve Identification Rates ranging from 60% to 89%.

e The ImageFinder itself has 3,000+ internal parameters which users have no access to.
Customization is the process of adjusting these 3,000+ internal parameters for your specific
image type. This is where the high degree of accuracy (95% to 99.9%) for your specific
image type is obtained.

(4) Feasibility Project via Customized Stand-alone Software.
e ATTRASOFT will develop a stand-alone software, which will address the special needs /
requirements of your application.
e This will allow you to show your upper management the practicality of a larger project.
(5) Programming Library in .Net;

(6) System Integration to your Production Line;

(7) Licensing & Annual Support.

One-time License: 2% of the project.
Annual License: 0.6% of the project
Annual Support: 20% of the project. (First year will be required.)

28.3 What is a Feasibility Study?

Attrasoft Image Recognition technology offers a suite of products,

e ImageFinder (off-the-shelf),

e ImageFinder for Dos,

e TransApplet (Library version of the ImageFinder),
¢ Customized-ImageFinder,

e Customized-TransApplet),

that enables the success of projects a person/company will develop with Attrasoft’s software
components.

In general, a Feasibility Study is very valuable because experience from many past projects will be
naturally deployed into your project. The very first question we encountered, and you will be asked
when you justify your project to your company, is “‘Can this be done?” Very often, the answer is more
than a simple "Yes"; a Feasibility Study will be necessary to respond this question, which is further
divided into a:

e Preliminary Assessment with 200 of yvour images (i.e., 100 image pairs), and a
e Feasibility Study with 2.000 of your images (i.e., 1,000 image pairs).

250

28.4 TransApplet Support

If the off-the-shelf product satisfies your needs, your path will be:

(1) Set up the system (you can do that);

(2) Collect the data (you can do that);

(3) Purchase the ImageFinder and make a Preliminary Assessment;
(4) Purchase TransApplet;

(5) System Integration Support;

(6) License and Annual Support (20% of the project).

The most likely path you will go through, which requires some customization, is:

(1) Set up the system (you can do that);

(2) Collect the data (you can do that);

(3) Purchase the ImageFinder and make a Preliminary Assessment;
(4) Purchase Customization of the standalone software;

(5) Purchase Customized TransApplet;

(6) System Integration;

(7) License and Annual Support (20% of the project).

Step (4), Customization deals with problems like:

e Reducing the operation Complexity via Attrasoft tuning the 3000+ internal parameters to one
specific image type;

Speed Optimization;

Internal Structure Optimization;

Graphical User Interface Customization;

Database other that Microsoft Access;

Database Interface;

Video Formats other than .avi files;

New Image Preprocessing Filters;

Customized Filters;

Programming Library;

Specific Symmetries or Combination of Symmetries;

Attrasoft can implement any symmetry (or combination of symmetries) which can be described
by mathematics;

Further refinement Tuning for small image segments;

Fine Tuning of the Neural Parameters;

Digital Image Database (Combine ImageFinder with Database);

Image Formats other than jpg and gif;

Counting objects which are NOT physically separated;

Reducing all images by the same amount without distortion to 100x100;

Internet Image Search Engines;

Multi-layers of image matching;

Web Interface (solutions that will provide users with a searchable database using a web
interface);

251

e Other Specific Needs.

252

	About Attrasoft TransApplet
	Software Requirements
	Installing the Software
	Information & Support
	License Agreement
	TABLE OF CONTENTS
	1. Introduction
	1.1 What is TransApplet?
	1.1.1 ImageFinder
	1.1.2 ImageFinder Family

	1.2 Software Requirements
	1.3 Installing the TransApplet
	1.3.1 Attrasoft.Transapplet70 Class Library
	1.3.2 Chapter Examples
	1.3.3 Linking the TransApplet

	1.4 Attrasoft Image Recognition Basics

	2. Image Recognition Overview
	2.1 Image Recognition Internal Structures
	2.2 Filters
	2.3 Image Preprocessing & Processing
	2.4 Normalization
	2.5 Signature Matching
	2.6 Image Segment Matching

	3. TransApplet Overview
	3.1 TransApplet API & User Interface
	3.2 Input
	3.3 Image Display
	3.4 Image Preprocessing, Processing, & Normalization
	3.5 Parameters
	3.6 Signature Recognition
	3.7 Dynamic Library
	3.8 Image Segment Matching
	3.9 Input
	3.10 Counting
	3.11 Batch Job
	3.12 Customized Software

	4. API
	4.1 Signature
	4.2 Signature Filter
	4.3 Matching Results
	4.4 Signature Matching
	4.5 ImageLibrary
	4.6 Matching Engine
	4.7 NeuralNet Filter
	4.8 Other API

	5. User Interface
	5.1 How to Create a Project
	5.2 How to Create Menus
	5.3 Link to Class Library
	5.4 Declare Objects

	6. Input
	6.1 Class Library Name
	6.2 Class Library Overview
	6.3 Set Up the Chapter Project
	6.4 Link to Class Library
	6.5 Key Segment
	6.6 Search Source Button

	7. Image Display
	7.1 Class Library Name
	7.2 Link to Class Library
	7.3 Implementing Buttons
	7.4 Test
	7.5 Output Images

	8. Image Preprocessing
	8.1 Image Preprocessing Filter
	8.2 PreProcessing API
	8.3 Enter Parameters
	8.4 Cut Off the Border Areas
	8.5 Impose a Mask
	8.6 Speed Up the Computation
	8.7 Skip the Empty Border by Content Percent

	9. Image Processing
	9.1 Good & Bad
	9.2 Processing API
	9.3 Set Image Processing Filters
	9.4 First Two Settings
	9.5 Chapter Projects

	10. Normalization
	10.1 Class Library Name
	10.2 Class Library Overview
	10.3 Link to Class Library
	10.4 Parameters

	11. Parameter Class
	11.1 Pushing Images Through Filters
	Predefined Objects
	11.3 Grouping Parameters Together
	11.4 Chapter Project
	11.5 Creating Forms
	11.6 TransApplet Objects
	11.7 Selecting Filters
	11.8 Set Filter Parameters

	12. Image Signatures
	12.1 Signature Menu
	12.2 API
	12.3 TransApplet Objects
	12.4 Key Signature
	12.5 Signature File Concepts
	12.6 Signature File Implementation
	12.7 Examples

	13. Unsupervised Filters
	13.1 Unsupervised Filter Menu
	13.2 Unsupervised Filter API
	13.3 N-Signature
	13.4 N:N Matching Design
	13.5 N:N Matching Implementation
	13.6 1:N Matching Design
	13.7 1:N Matching Implementation

	14. BioFilters
	14.1 BioFilter Menu
	14.2 BioFilter API
	14.3 Training Design
	14.4 Training Implementation
	14.5 Parameters
	14.6 Example: Label Recognition Training
	14.7 N:N Matching Design
	14.8 N:N Matching Implementation
	14.9 1:N Matching Design
	14.10 1:N Matching Implementation

	15. NeuralFilters
	15.1 NeuralFilter Menu
	15.2 NeuralFilter API
	15.3 Parameters
	15.4 Training Design
	15.5 Training Implementation
	15.6 N:N Matching Design
	15.7 N:N Matching Implementation
	15.8 1:N Matching Design
	15.9 1:N Matching Implementation

	16. Dynamic Library
	16.1 Dynamic Library Menu
	16.2 Dynamic Library API
	16.3 Creating Master Library
	16.4 Training Design
	16.5 Load Dynamic Library
	16.6 Library M:N Matching
	16.7 Library 1:N Matching
	16.8 Library Updating Design
	16.9 Update Implementation

	17. NeuralNet Filter
	17.1 Key Segment Specification
	17.2 NeuralNet Filter Menu
	17.3 NeuralNet Filter API
	17.4 Training
	17.5 1:N Matching Design
	17.6 1:N Matching Implementation
	17.7 Results
	17.8 Another Test: Mr. Potato

	18. Parameters
	18.1 Overview
	18.2 Image Preprocessing
	18.3 Image Processing
	18.3.1 Edge Filters
	18.3.2 Threshold Filters
	18.3.3 Clean-Up Filters

	18.4 Normalization Filter
	18.5 Unsupervised Filter & BioFilter
	18.6 Neural Filters
	18.7 NeuralNet Filter
	18.7.1 Symmetry
	18.7.2 Translation Type
	18.7.3 Scaling Type
	18.7.4 Rotation Type
	18.7.5 Area of Interest (AOI)
	18.7.6 Blurring
	18.7.7 Sensitivity
	18.7.8 Internal/External Weight Cut
	18.7.9 Segment Size
	18.7.10 Image Type
	18.7.11 Use BioFilter & Use Neural Filter
	18.7.12 Auto Segment
	18.7.13 Summary

	19. Input Options
	19.1 File Input
	19.2 Sub-Directory Input
	19.3 Segment File Input
	19.4 Database Input, Whole Image
	19.5 Database Input, Image Segment
	19.6 Converting AVI Video to Images
	19.7 Converting Live Video to Images

	20. Database Input
	20.1 Basic Access Class
	Input Class
	20.3 Input Selection
	20.4 Database Parameter Input
	20.5 Database Input Implementation
	20.6 Testing

	21. Video Input
	21.1 Class Library Name
	21.2 Class Library Overview
	21.3 Link to Class Library
	21.4 AVI Video Selection
	21.5 Converting Video to Images
	21.6 Testing

	22. Live Video Input
	22.1 Class Library Name
	22.2 Link to Class Library
	22.3 ImageFinder Input
	22.4 Initialization
	22.5 Video to Image Design
	22.6 Display Live Image in Picture Box
	22.7 Converting Live Video to Images

	23. Counting & Tracking Design
	23.1 Data
	23.2 Counting the Left Image
	23.3 Counting the Right Image
	23.4 Automatic Tracking

	24. Counting
	24.1 Introduction
	24.2 Class Library Name
	24.3 Class Library Overview
	24.4 Link to Class Library
	24.5 Counting Parameters
	24.6 Implementing Counting
	24.7 Tracking
	24.8 Testing

	25. Batch Job
	25.1 Batch Code
	25.2 Sample Batch Files
	25.3 Batch Design
	25.4 Batch Execution Code
	API
	25.6 Implementation

	26. ImageFinder for Dos
	26.1 Why Dos Version?
	26.2 The Idea
	26.3 Batch Design
	26.4 Class Library Name
	26.5 Class Library Overview
	26.6 Creating Console Project
	26.7 Link to Class Library
	26.8 Implementation the Project
	26.9 Example
	26.10 How to Use ImageFinder For DOS

	27. Introduction To ImageHunt
	27.1 Why ImageHunt?
	27.2 ImageHunt Design
	27.3 Introduction to Web Server
	27.4 Install ImageHunt
	27.5 Create Web Project
	27.6 Step 1. Open Image File
	27.6.1 Create the Data Directory
	27.6.2 Modify the WebForm1.aspx Page

	27.7 Step 2. Upload Image
	27.8 Step 3. Create Batch File
	27.8.1 Cookies or URL
	27.8.2 Create Batch File

	27.9 Dos Class
	27.10 Step 4. Batch Run

	28. ImageFinder Support Service Packages
	28.1 What is Support Service?
	28.2 Process
	28.3 What is a Feasibility Study?
	28.4 TransApplet Support

