In this section, we will introduce two mathematics examples packed in
the software.
Let a system be defined by a triplet (x, y, z) which obeys:
x (n+1) = ( x (n) + y(n) + z(n) ) Mod 7;y (n+1) = x ( n );
z (n+1 ) = y ( n) Mod 5;
This is a finite dynamic system. The domains are:
x in { 0, 1, 2, 3, 4, 5, 6 };y in { 0, 1, 2, 3, 4, 5, 6 };
z in { 0, 1, 2, 3, 4 }.
The possible states are 000, 001, . . ., 100, 101, . . . , 775.
Assume initially that (x, y, z) is in state (1 0 0), then it will generate the following sequence by a computer simulation:
1 0 0
1 1 0
2 1 1
4 2 1
0 4 2
6 0 4
3 6 0
2 3 1
6 2 3
4 6 2
5 4 1
3 5 4
5 3 0
1 5 3
2 1 0
3 2 1
6 3 2
4 6 3
6 4 1
4 6 4
0 4 1
5 0 4
2 5 0
0 2 0
2 0 2
4 2 0
6 4 2
5 6 4
1 5 1
0 1 0
1 0 1
2 1 0
3 2 1
6 3 2
4 6 3
6 4 1
4 6 4
0 4 1
5 0 4
2 5 0
0 2 0
2 0 2
4 2 0
6 4 2
5 6 4
1 5 1
0 1 0
1 0 1
2 1 0
3 2 1
6 3 2
4 6 3
6 4 1
4 6 4
0 4 1
5 0 4
2 5 0
0 2 0
2 0 2
4 2 0
6 4 2
5 6 4
1 5 1
0 1 0
1 0 1
2 1 0
3 2 1
6 3 2
4 6 3
6 4 1
The next row is 4 6 4.
Step 1. Data and Input File;
0 4 1 384000
5 0 4 384000
2 5 0 384000
0 2 0 384000
2 0 2 384000
4 2 0 384000
6 4 2 384000
5 6 4 384000
1 5 1
384000
The command predicts next 10 rows. In this case, they are all correct.
Let a system be defined by ( x, y, z , s, t), which obeys the following
rule:
x (n+1) = ( x (n) + y(n) + z(n) ) Mod 7;y (n+1) = x ( n );
z (n+1 ) = y ( n) Mod 5; 60%
z (n+1 ) = ( y ( n)+ 1 ) Mod 5; 40%
s (n+1 ) = ( s(n) + 1 ) Mod 5; 60%
s (n+1 ) = ( s(n) + 2 ) Mod 5; 40%
t (n+1 ) = s ( n) Mod 3.
This is a Markov chain. Each state can go to one of 4 different
states with the probability: 36%, 24%, 24%, and 16%. The possible domains
are:
x in { 0, 1, 2, 3, 4, 5, 6 };y in { 0, 1, 2, 3, 4, 5, 6 };
z in { 0, 1, 2, 3, 4 };
s in { 0, 1, 2, 3, 4 };
t in { 0, 1, 2 }.
The possible states are 00000, 00001, . . ., 10000, 10001, . . .
, 77553. A computer simulates this Markov chain 20,000 times and the following
data is generated:
1 1 0 1 0
2 1 2 3 1
5 2 1 0 0
1 5 3 2 0
2 1 0 4 2
3 2 2 1 1
0 3 3 2 1
6 0 4 4 2
3 6 0 1 1
2 3 1 2 1
6 2 3 3 2
4 6 2 0 0
5 4 1 1 0
3 5 4 2 1
5 3 0 3 2
1 5 4 0 0
3 1 0 2 0
4 3 2 4 2
2 4 3 0 1
2 2 0 1 0
4 2 2 2 1
1 4 2 3 2
0 1 4 4 0
5 0 1 0 1
6 5 0 1 0
4 6 0 3 1
. . .
The result is a distribution:
Possibility Confidence*Probability
1 3 0 2 0 443
6 3 2 1 1 139
3 4 0 0 1 405
0 3 4 1 0 500
6 6 1 0 1 4000
6 6 1 1 0 42000
2 5 4 0 1 101
5 1 3 1 1 367
4 2 2 0 1 44
3 0 3 1 1 481
6 5 1 0 1 253
2 4 0 0 1 24000
2 4 1 0 1 12000
0 2 4 1 0 481
4 5 2 0 1 750
2 4 1 1 0 2500
6 2 4 2 0 310
5 6 1 0 1 424
5 3 1 2 0 120
6 6 2 2 0 5000
1 1 0 0 1 101
6 2 0 1 0 44
4 1 3 2 0 291
0 6 1 2 0 215
---------------------------------------------------
Weighted Average
4 5 1 1 0
Highest Probability
6 6 1 1 0 42000
Error of each number
0.33 0.33 0.22 0.22 0.11
The most likely possibility is ( 6, 6, 1, 1, 0). This is very close
to the computer-simulated result, ( 6, 6, 1, 0, 1). The probability of
the above configuration is roughly:
42000/(4000+42000+24000+12000+2500+5000) = 47%.The confidence of this prediction is 42000.